Skip to main content
Log in

Causal independence and the energy-level density of states in local quantum field theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Within the general framework of local quantum field theory a physically motivated condition on the energy-level density of well-localized states is proposed and discussed. It is shown that any model satisfying this condition obeys a strong form of the principle of causal (statistical) independence, which manifests itself in a specific algebraic structure of the local algebras (“split property”). It is also shown that the proposed condition holds in a free field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys.5, 848 (1964)

    Google Scholar 

  2. Doplicher, S., Haag, R., Roberts, J.E.: Fields, observables, and gauge transformations. Commun. Math. Phys.13, 1 (1969)

    Google Scholar 

  3. Streater, R.F., Wightman, A.S.: PCT, spin and statistics and all that. New York: Benjamin 1964

    Google Scholar 

  4. Haag, R., Swieca, J.A.: When does a quantum field theory describe particles? Commun. Math. Phys.1, 308 (1965)

    Google Scholar 

  5. Enß, V.: Characterization of particles by means of local observables. Commun. Math. Phys.45, 35 (1975)

    Google Scholar 

  6. Schlieder, S.: Einige Bemerkungen über Projektionsoperatoren. Commun. Math. Phys.13, 216 (1969)

    Google Scholar 

  7. Roos, H.: Independence of local algebras in quantum field theory. Commun. Math. Phys.16, 238 (1970)

    Google Scholar 

  8. Buchholz, D.: Product states for local algebras. Commun. Math. Phys.36, 287 (1974)

    Google Scholar 

  9. Doplicher, S., Longo, R.: Standard and split inclusions of von Neumann algebras. Invent. math.73, 493 (1984)

    Google Scholar 

  10. Summers, S.J.: Normal product states for fermions and twisted duality for CCR-and CAR-type algebras with application to the Yukawa2 quantum field model. Commun. Math. Phys.86, 111 (1982)

    Google Scholar 

  11. D'Antoni, C., Longo, R.: Interpolation by typeI factors and the flip automorphism. J. Funct. Anal.51, 361 (1983)

    Google Scholar 

  12. Glimm, J., Jaffe, A.: The energy momentum spectrum and vacuum expectation values in quantum field theory. II. Commun. Math. Phys.22, 1 (1971)

    Google Scholar 

  13. Doplicher, S.: Local aspects of superselection rules. Commun. Math. Phys.85, 73 (1982)

    Google Scholar 

  14. Doplicher, S., Longo, R.: Local aspects of superselection rules. II. Commun. Math. Phys.88, 399 (1985)

    Google Scholar 

  15. Buchholz, D., Doplicher, S., Longo, R.: On Noethers theorem in quantum field theory (to appear in Ann. Phys.)

  16. Driessler, W.: Duality and absence of locally generated superselection sectors for CCR-type algebras. Commun. Math. Phys.70, 213 (1979)

    Google Scholar 

  17. Fröhlich, J.: Quantum theory of non-linear invariant wave (field) equations or: superselection sectors in constructive quantum field theory. In: Invariant wave equations. Lecture Notes in Physics, Vol. 73. Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  18. Buchholz, D.: Work in progress

  19. Buchholz, D., Junglas, P.: Local properties of equilibrium states and the particle spectrum in quantum field theory. Lett. Math. Phys.11, 51 (1986)

    Google Scholar 

  20. Knight, J.M.: Strict localization in quantum field theory. J. Math. Phys.2, 459 (1961)

    Google Scholar 

  21. Olesen, P.: On the exponentially increasing level density in string models and the tachyon singularity. Nucl. Phys. B267, 539 (1986)

    Google Scholar 

  22. Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc.16, 1 (1955)

    Google Scholar 

  23. Gross, D.J., Pisarski, R.D., Yaffe, L.G.: QCD and instantons at finite temperature. Rev. Mod. Phys.53, 43 (1981)

    Google Scholar 

  24. Licht, A.L.: Strict localization. J. Math. Phys.4, 1443 (1963)

    Google Scholar 

  25. Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics. I. Commun. Math. Phys.23, 199 (1971)

    Google Scholar 

  26. Sakai, S.:C*-algebras andW*-algebras. Berlin, Heidelberg, New York: Springer 1971

    Google Scholar 

  27. Borchers, H.J.: A remark on a theorem of B. Misra. Commun. Math. Phys.4, 315 (1967)

    Google Scholar 

  28. Borchers, H.J.: Energy and momentum as observables in quantum field theory. Commun. Math. Phys.2, 49 (1966)

    Google Scholar 

  29. Borchers, H.J.: On the vacuum state in quantum field theory. Commun. Math. Phys.1, 57 (1965)

    Google Scholar 

  30. Pommerenke, Ch.: Private communication

  31. Buchholz, D., D'Antoni, C., Fredenhagen, K.: The universal structure of local algebras in quantum field theory (to appear)

  32. Araki, H.: Von Neumann algebras of observables for free scalar field. J. Math. Phys.5, 1 (1964)

    Google Scholar 

  33. Wightman, A.S.: Recent achievements of axiomatic field theory. In: Trieste lecture notes 1962. Vienna: IAEA 1963

    Google Scholar 

  34. Schroer, B.: Infrateilchen in der Quantenfeldtheorie. Fortschr. Phys.11, 1 (1963)

    Google Scholar 

  35. Kosaki, H.: On the continuity of the map ϕ →|ϕ| from the predual of aW*-algebra. J. Funct. Anal.59, 123 (1984)

    Google Scholar 

  36. Longo, R.: Private communication

  37. Buchholz, D., Jacobi, P.: On the nuclearity condition for massless fields (to be published)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Osterwalder

Dedicated to H. J. Borchers on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchholz, D., Wichmann, E.H. Causal independence and the energy-level density of states in local quantum field theory. Commun.Math. Phys. 106, 321–344 (1986). https://doi.org/10.1007/BF01454978

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01454978

Keywords

Navigation