Skip to main content
Log in

Regularity of measure theoretic entropy for geodesic flows of negative curvature: I

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Eberlein, P.: When is a geodesic flow of Anosov type I. J. Differ. Geom.8, 437–463 (1973)

    Google Scholar 

  2. Hopf, E.: Statistik der Lösungen geodätischer Probleme vom unstabilen Typus II. Math. Ann.117, 590–608 (1940)

    Google Scholar 

  3. Mañé, R.: On the continuity of metric entropy. Preprint

  4. Oseledets, V.I.: A multiplicative ergodic theorem. Trans. Moscow Math. Soc.19, 197–231 (1968)

    Google Scholar 

  5. Pesin, Y.: Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv.32, 54–114 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by NSF Grant 8610730(2)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knieper, G., Weiss, H. Regularity of measure theoretic entropy for geodesic flows of negative curvature: I. Invent Math 95, 579–589 (1989). https://doi.org/10.1007/BF01393891

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01393891

Keywords

Navigation