Skip to main content
Log in

Reactivation of a glycerinated model of Amoeba

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Motile models ofAmoeba proteus prepared by extraction at −20 °C with a 50% buffered glycerol solution showed remarkable contraction on addition of Mg-ATP with retainment of Ca++ sensitivity. The initial contraction around the nucleus occurred on addition of Mg-ATP independently of the Ca++ concentration, and was followed by contractions of three different patterns. In 10−8M Ca++, the granuloplasm contracted as a whole and separated from the membrane leaving no detectable particles in the anterior region. In 10−6M Ca++, the granuloplasm contracted leaving some granules which showed active and vigorous two-directional streaming similar to that in the living cell. Sometimes a part of the plasma membrane twitched. The streaming lasted up to 20 minutes. In 10−4M Ca++, after the initial contraction around the nucleus, no significant movement was observed. All these movements in the models were inhibited by cytochalasin B or N-ethylmaleimide. The relationship between the Mg-ATP and the Ca++ concentrations was examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R. D., 1961: A new theory of ameboid movement and protoplasmic streaming. Exp. Cell Res. Suppl.8, 17–31.

    Google Scholar 

  • —, 1973: Biophysical aspects of pseudopodium formation and retraction. In: The Biology of Amoeba (Joen, K. M., ed.), pp. 201–247. New York-London: Academic Press.

    Google Scholar 

  • —,Allen, N. S., 1978: Cytoplasmic streaming in amoeboid movement. Ann. Rev. Biophys. Bioenerg.7, 469–495.

    Google Scholar 

  • —,Cocledge, J. W., Hall, P. J., 1960: Streaming in cytoplasm dissociated from the giant amoeba,Chaos chaos. Nature187, 896–899.

    PubMed  Google Scholar 

  • Cande, W. Z., 1980: A permeabilized cell model for studying cytokinesis using mammalian tissue culture cells. J. Cell Biol.87, 326–335.

    PubMed  Google Scholar 

  • Cobbold, P. H., 1980: Cytoplasmic free calcium and amoeboid movement. Nature285, 441–446.

    PubMed  Google Scholar 

  • Condeelis, J. S., Taylor, D. L., 1977: The contractile basis of amoeboid movement. V. The control of gelation, solation, and contraction in extracts fromDictyostelium discoideum. J. Cell Biol.74, 901–927.

    Google Scholar 

  • Cullen, K. J., Allen, R. D., 1980: A laser microbeam study of amoeboid movement. Exp. Cell Res.128, 353–362.

    PubMed  Google Scholar 

  • Ebashi, S., 1961: Calcium binding activity of vesicular relaxing factor. J. Biochem.50, 236–244.

    Google Scholar 

  • —,Endo, M., 1968: Calcium ion and muscle contraction. Prog. Biophys. Mol. Biol.18, 123–183.

    PubMed  Google Scholar 

  • Gicquaud, C. R., Couillard, P., 1970: Préservation des mouvements dans le cytoplasme de membrane d'Amoebaproteus. Cytobiologie1, 460–467.

    Google Scholar 

  • Godt, R. E., 1974: Calcium-activated tension of skinned muscle fibers of the frog. Dependence on magnesium adenosin triphosphate concentration. J. gen. Physiol.63, 722–759.

    PubMed  Google Scholar 

  • Griffin, J. L., 1960: An improved mass culture method for the large, free-living amebae. Exp. Cell Res.21, 170–178.

    PubMed  Google Scholar 

  • Hasegawa, T., Takahashi, S., Hayashi, H., Hatano, S., 1980: Fragmin: A calcium ion sensitive regulatory factor on the formation of actin filaments. Biochem.19, 2677–2683.

    Google Scholar 

  • Hinssen, H., 1981: An actin-modulating protein fromPhysarum polycephalum. II. Ca++- dependence and other properties. Europ. J. Cell Biol.23, 234–240.

    PubMed  Google Scholar 

  • Hirshfield, H. I., Zimmerman, A. M., Marsland, D., 1958: The nucleus in relation to plasmagel structure inAmoeba proteus; a pressure-temperature analysis. J. cell. comp. Physiol.52, 269–274.

    Google Scholar 

  • Hoffmann-Berling, H., 1954: Adenosintriphosphat als Betriebsstoff von Zellbewegungen. Biochim. biophys. Acta14, 182–194.

    PubMed  Google Scholar 

  • Jewell, B. R., Rüegg, J. C., 1966: Oscillatory contraction of insect fibrillar muscle after glycerol extraction. Proc. Roy. Soc. Ser. B. Biol. Sci.164, 428–459.

    Google Scholar 

  • Krels, T., Birchmeler, W., 1980: Stress fiber sarcomeres of fibroblasts are contractile. Cell22, 555–561.

    PubMed  Google Scholar 

  • Kuroda, K., Kamiya, N., 1975: Active movement ofNitella chloroplastin vitro. Proc. Japan Acad.51, 774–777.

    Google Scholar 

  • Marsland, D., 1956: Protoplasmic contractility in relation to gel structure: Temperature-Pressure experiments on cytokinesis and amoeboid movement. Int. Rev. Cytol.5, 199–227.

    Google Scholar 

  • Mimura, N., Asano, A., 1979: Ca++-sensitive gelation of actin filaments by a new protein factor. Nature282, 44–48.

    PubMed  Google Scholar 

  • Opas, M., Rinaldi, R., 1976: Ca++ controlled contraction-relaxation cycle in glycerinated amoeboid cells. Protoplasma90, 393–397.

    PubMed  Google Scholar 

  • Prescott, D. M., James, T. W., 1955: Culturing ofAmoeba proteus onTetrahymena. Exp. Cell Res.8, 256–258.

    Google Scholar 

  • Rinaldi, R., Opas, M., 1976: Graphs of contracting glycerinatedAmoeba proteus. Nature260, 525–526.

    Google Scholar 

  • — —,Hrebenda, B., 1975: Contractility of glycerinatedAmoeba proteus andChaos-chaos. J. Protozool.22, 286–292.

    PubMed  Google Scholar 

  • Schäfer-Danneel, S., 1967: Strukturelle und funktionelle Voraussetzungen für die Bewegung vonAmoeba proteus. Zeitschr. Zellforsch.78, 441–462.

    Google Scholar 

  • Shibata-Sekiya, K., Tonomura, Y., 1975: Desensitization of substrate inhibition of acto-H-meromyosin ATPase by treatment of H-meromyosin with p-chloromercuribenzoate. Relation between the extent of desensitization and the amount of bound p-chloromercuribenzoate. J. Biochem.77, 543–557.

    PubMed  Google Scholar 

  • Simard-Duquesne, N., Couillard, P., 1962: Amoeboid movement. I. Reactivation of glycerinated models ofAmoeba proteus with adenosine triphosphate. Exp. Cell Res.28, 85–91.

    PubMed  Google Scholar 

  • Stendahl, O. I., Stossel, T. P., 1980: Actin-binding protein amplifies actomyosin contraction, and gelsolin confers calcium control on the direction of contraction. Biochem. Biophys. Res. Comm.92, 675–681.

    PubMed  Google Scholar 

  • Taylor, D. L., Blinks, H. R., Reynolds, G., 1980: Contractile basis of ameboid movement. VIII. Aequorin luminescence during ameboid movement, endocytosis, and capping. J. Cell Biol.86, 599–607.

    Google Scholar 

  • —,Condeelis, J. S., 1979: Cytoplasmic structure and contractility in amoeboid cells. Int. Rev. Cytol.56, 57–144.

    PubMed  Google Scholar 

  • — —,Moor, P. L., Allen, R. D., 1973: The contractile basis of amoeboid movement. I. The chemical control of motility in isolated cytoplasm. J. Cell Biol.59, 378–394.

    PubMed  Google Scholar 

  • —,Moore, P. L., Condeelis, J. S., Allen, R. D., 1976: The mechanoehemical basis of amoeboid movement. I. Ionic requirements for maintaining viscoelasticity and contractility of amoeba cytoplasm. Exp. Cell Res.101, 127–133.

    PubMed  Google Scholar 

  • Weber, K., Rathke, P. C., Osborn, M., Franke, W. W., 1976: Distribution of actin and tubulin in cells and in glycerinated cell models after treatment with cytochalasin B (CB). Exp. Cell Res.102, 285–297.

    PubMed  Google Scholar 

  • Williamson, R. E., 1975: Cytoplasmic streaming inChara: A cell model activated by ATP and inhibited by cytochalasin B. J. Cell Sci.17, 655–668.

    PubMed  Google Scholar 

  • Yin, H. L., Stossel, T. P., 1979: Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature281, 583–586.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroda, K., Sonobe, S. Reactivation of a glycerinated model of Amoeba. Protoplasma 109, 127–142 (1981). https://doi.org/10.1007/BF01287635

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01287635

Keywords

Navigation