Skip to main content
Log in

A method for rapid freeze fixation of plant cells

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

We describe here an apparatus that permits rapid freeze fixation of whole cells, which are then prepared by freeze substitution and resin embedment for examination in the EM. The freezing device utilizes a rotary solenoid that rapidly plunges the specimen holder, a formvar-film-covered thin wire loop, into a well of stirred liquid propane at −180‡C. The rotary solenoid allows for an adjustable, repeatable immersion rate. Substitution takes place at −80 ‡C in acetone with 2% OsO4 and is followed by en bloc staining in either hafnium tetrachloride or uranyl acetate. We have utilized these techniques on plant cells, for which there has been relatively little published work when compared to other organisms. The results show that, with the versatile specimen holder and rapid, repeatable immersion rates, different cell types, including pollen, stamen hairs, and germinating moss spores, can be rapidly frozen with repeatable success. The improved preservation achieved with rapid freeze fixation over conventional chemical fixation reveals itself particularly in the structure of the plasmamembrane, the cytoskeleton, chromatin, and certain endomembrane systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bridgman, P. C., Reese, T. S., 1984: The structure of cytoplasm in directly frozen cultured cells. I. Filamentous meshworks and the cytoplasmic ground substance. J. Cell Biol.99, 1655–1668.

    Google Scholar 

  • Browning, A. J., Gunning, B. E. S., 1977: An ultrastructural and cytochemical study of the wall-membrane apparatus using freeze substitution. Protoplasma93, 7–26.

    Google Scholar 

  • Costello, M. J., 1980: Ultra-rapid freezing of thin biological samples. Scanning Electron Microscopy II, 361–370.

    Google Scholar 

  • Costello, M. J., Corless, J. M., 1978: The direct measurement of temperature changes within freeze fracture specimens during rapid quenching in liquid coolants. J. Microsc.112, 17–37.

    Google Scholar 

  • Ebersold, H. R., Cordier, J.-L., Luthy, P., 1981 a: Bacterial mesosomes: method dependent artifacts. Arch. Microbiol.130, 19–22.

    Google Scholar 

  • — — —,Muller, M., 1981 b: A freeze substitution and freeze fracture study of bacterial spore structures. J. Ultrastruct. Res.76, 71–81.

    Google Scholar 

  • Escaig, J., 1982: New instruments which facilitate freezing at 83K and 6K. J. Microsc.126, 221–229.

    Google Scholar 

  • Fisher, D. B., 1975: Structure of functional soybean sieve elements. Plant Physiol.56, 555–569.

    Google Scholar 

  • Handley, D. A., Alexander, J. T., Chien, S., 1981: The design and use of a simple device for rapid quench-freezing of biological samples. J. Microsc.121, 273–282.

    Google Scholar 

  • Hatae, T., Okuyama, K., Fujita, M., 1984: Visualization of the cytoskeletal elements in tissue culture cells by bloc-staining with hafnium chloride after rapid freezing and freeze substitution fixation. J. Electron Microsc.33, 186–190.

    Google Scholar 

  • Heath, I. B., Rethoret, K., 1982: Mitosis in the fungusZygorhynchus moelleri: evidence for stage specific enhancement of microtubule preservation by freeze substitution. Eur. J. Cell Biol.28, 180–189.

    Google Scholar 

  • Hepler, P. K., 1976: The blepharoplast ofMarsilea: itsde novo formation and spindle association. J. Cell Sci.21, 361–390.

    Google Scholar 

  • Heuser, J. E., Reese, T. S., Dennis, M. J., Jan, Y., Jan, L., Evans, L., 1979: Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell Biol.81, 275–300.

    Google Scholar 

  • —,Kirschner, M. W., 1980: Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J. Cell Biol.86, 212–234.

    Google Scholar 

  • Hoch, H. C., Howard, R. J., 1980: Ultrastructure of freeze-substituted hyphae of the basidiomyceteLaetisaria arvalis. Protoplasma103, 281–297.

    Google Scholar 

  • Howard, R. J., 1981: Ultrastructural analysis of hyphal tip cell growth in fungi: spitzenkorper, cytoskeleton and endomembranes after freeze substitution. J. Cell Sci.48, 89–103.

    Google Scholar 

  • —,Aist, J. R., 1979: Hyphal tip ultrastructure of the fungusFusarium. J. Ultrastruct. Res.66, 224–234.

    Google Scholar 

  • Lancelle, S. A., Torrey, J. G., Hepler, P. K., Callaham, D. A., 1985: Ultrastructure of freeze-substitutedFrankia strain HFPCcI3, the actinomycete isolated from root nodules ofCasuarina cunninghamiana. Protoplasma127, 64–72.

    Google Scholar 

  • McCully, M. E., Canny, M. J., 1985: The stabilization of labile configurations of plant cytoplasm by freeze substitution. J. Microsc.139, 27–33.

    Google Scholar 

  • McKerracher, L. J., Heath, I. B., 1985: Microtubules around migrating nuclei in conventionally fixed and freeze-substituted cells. Protoplasma125, 162–172.

    Google Scholar 

  • Mersey, B., McCully, M. E., 1978: Monitoring the course of fixation of plant cells. J. Microsc.114, 49–76.

    Google Scholar 

  • Ornberg, R. L., Reese, T. S., 1981: Beginning of exocytosis captured by rapid freezing ofLimulus amebocytes. J. Cell Biol.90, 40–54.

    Google Scholar 

  • Plattner, H., Bachmann, L., 1982: Cryofixation: a tool in biological ultrastructural research. Int. Rev. Cytol.79, 237–304.

    Google Scholar 

  • Porter, K. R., Anderson, K. L., 1982: The structure of the cytoplasmic matrix preserved by freeze drying and freeze substitution. Eur. J. Cell Biol.29, 83–96.

    Google Scholar 

  • Robards, A. W., Goodchild, D. J., 1981: A new look at some cooling rates using a purpose designed rate meter. Proc. R. Microsc. Soc.16, 180.

    Google Scholar 

  • Tiwari, S. C. 1985: Ultrastructural studies on tapetum and pollen development. Ph.D. Dissertation, Australian National University, Canberra, Australia.

    Google Scholar 

  • —,Wick, S. M., Williamson, R. E., Gunning, B. E. S., 1984: Cytoskeleton and integration of cellular function in cells of higher plants. J. Cell Biol.99, 63s-69s.

    Google Scholar 

  • Tsukita, S., Yano, M., 1985: Actomyosin structure in contracting muscle detected by rapid freezing. Nature317, 182–184.

    Google Scholar 

  • —,Usukura, J., Ishikawa, H., 1982: Myosin filaments in smooth muscle cells of the guinea pig taenia coli: a freeze substitution study. Eur. J. Cell Biol.28, 195–201.

    Google Scholar 

  • Van Harreveld, A., Trubatch, J., Steiner, J., 1974: Rapid freezing and electron microscopy for the arrest of physiological processes. J. Microsc.100, 189–198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lancelle, S.A., Callaham, D.A. & Hepler, P.K. A method for rapid freeze fixation of plant cells. Protoplasma 131, 153–165 (1986). https://doi.org/10.1007/BF01285037

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01285037

Keywords

Navigation