Skip to main content
Log in

Application of the finite element method to time-dependent quantum mechanics: I. H and He in a laser field

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A finite element approach is described to solve the time- dependent Hartree-Fock equation of atoms in the presence of time-dependent electromagnetic fields. Time-dependent energy changes, ionization rates and high order nonlinear optical polarizabilities, χ2n+1 (n >, 0) for the atoms H and He have been calculated. The finite element method is shown to be easily adaptable to treat intense short pulses and includes automatically both bound and continuum electronic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.D. Bandrauk (ed.),Atomic and Molecular Processes with Short Intense Laser Pulses, NATO ASI, Vol. B171 (Plenum Press, New York, 1988).

    Google Scholar 

  2. A.D. Bandrauk and S.C. Wallace (eds.),Coherence Phenomena in Atoms and Molecules in Laser Fields, NATO ASI, Vol. B278 (Plenum Press, New York, 1992).

    Google Scholar 

  3. P.H. Buchsbaum, A. Zavriyev, H.G. Muller and D.W. Schumacher, Phys. Rev. Lett. 64 (1990) 1883.

    Google Scholar 

  4. A.D. Bandrauk and M.L. Sink, Chem. Phys. Lett. 57 (1978) 569; J. Chem. Phys. 74 (1981) 1110.

    Google Scholar 

  5. E. Aubanel, A.D. Bandrauk and P. Rancourt, Chem. Phys. Lett.197 (1992) 419.

    Google Scholar 

  6. K.C. Kulander, Phys. Rev. A36 (1987) 2726.

    Google Scholar 

  7. J.L. Krause, K.J. Schafer and K.C. Kulander, Chem. Phys. Lett.178 (1991) 573.

    Google Scholar 

  8. B.A. Finlayson,Method of Weighted Residues (Academic Press, New York, 1974).

    Google Scholar 

  9. O.C. Zinkiewicz and K. Morgan,Finite Elements and Approximation (Wiley, New York, 1983).

    Google Scholar 

  10. D. Sundholm, J. Olsen and S.A. Alexander, J. Chem. Phys. 96 (1992) 5229.

    Google Scholar 

  11. D. Heinemann, A. Rosen and B. Fricke, Chem. Phys. Lett.166 (1990) 627.

    Google Scholar 

  12. D. Heinemann, B. Fricke and D. Kolb, J. Chem. Phys. 38 (1988) 4994.

    Google Scholar 

  13. T. Inoshita, Phys. Rev. B41 (1990) 180.

    Google Scholar 

  14. H. Murakami, V. Sonnad and E. Clementi, Int. J. Quant. Chem. 42 (1992) 785.

    Google Scholar 

  15. G. Hammerlin and K.H. Hoffmann,Numerical Methods (Springer, New York, 1991).

    Google Scholar 

  16. H. Yu, A.D. Bandrauk and V. Sonnad, in ref. [2], p. 31.

  17. A.D. Becke, J. Chem. Phys. 76 (1982) 6037.

    Google Scholar 

  18. A.D. Becke and R.M. Dickson, J. Chem. Phys. 92 (1990) 3610.

    Google Scholar 

  19. J.C. Slater,Quantum Theory of Atomic Structure, Vol. l (McGraw-Hill, New York, 1960).

    Google Scholar 

  20. J.R. Flores, E. Clementi and V. Sonnad, J. Chem. Phys. 91 (1989) 7030.

    Google Scholar 

  21. N.C. Manakov, M.A. Preobrazhenskii and L.P. Rapoport, Opt. Spectr. 35 (1973) 14.

    Google Scholar 

  22. C.A. Nicolaides, T. Mercouris and G. Aspromallis, J. Opt. Soc. Am. B7 (1990) 494.

    Google Scholar 

  23. Y. Justum, A. Maquet and Y. Heno, Phys. Rev. A41 (1990) 2791.

    Google Scholar 

  24. L.L. Boyle, A.D. Buckingham, R.L. Disch and D.A. Dunmur, J. Chem. Phys. 45 (1966) 1318.

    Google Scholar 

  25. P. Sitz and R. Yaris, J. Chem. Phys. 48 (1968) 3546.

    Google Scholar 

  26. P.R. Taylor, T.J. Lee, J.E. Rice and J. Almlof, Chem. Phys. Lett. 163 (1989) 359.

    Google Scholar 

  27. M. Jaszunski and D.L. Yeager, Phys. Rev. A40 (1989)1651.

    Google Scholar 

  28. J.E. Rice, P.R. Taylor, T.J. Lee and J. Almlof, J. Chem. Phys. 94 (1991) 4972.

    Google Scholar 

  29. R.B. Miller and S.E. Harris, IEEE J. Quant. Electr. QE-9 (1973) 470.

    Google Scholar 

  30. D.M. Bishop, J. Pipin and J.N. Silverman, Mol. Phys. 59 (1986) 165.

    Google Scholar 

  31. D.M. Bishop, Rev. Mod. Phys. 62 (1990) 343.

    Google Scholar 

  32. Y.R. Shen,The Principles of Nonlinear Optics (Wiley, New York, 1984).

    Google Scholar 

  33. W.H. Press, B.P. Flannery, S.A. Teukolsky and W.F. Vetterling,Numerical Recipes (Cambridge Univ. Press, New York, 1986).

    Google Scholar 

  34. N.L. Manakov, V.D. Ovsynnikovand L.P. Cliffs, Sov. Phys. JETP 43 (1976) 885.

    Google Scholar 

  35. A.G. Fainshtein, N.L. Manakov, V.D. Ovsiannikov and L.P. Rapoport, Phys. Rep. 210 (1992) 111.

    Google Scholar 

  36. J. Reintjes and C.Y. She, Int. J. Quant. Chem. 14 (1978) 581.

    Google Scholar 

  37. A.J. Thakkar, J. Chem. Phys. 75 (1981) 4496.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Bandrauk, A. & Sonnad, V. Application of the finite element method to time-dependent quantum mechanics: I. H and He in a laser field. J Math Chem 15, 273–286 (1994). https://doi.org/10.1007/BF01277565

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01277565

Keywords

Navigation