Skip to main content
Log in

Effect of repeated administration of novel stressors on central beta adrenoceptors

  • Short Communication
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

Subtypes of beta adrenoceptors were measured in 17 different areas of brain in rats exposed for 12 days to novel Stressors. Mild stress such as individual housing and handling caused no change in beta1 and beta2 adrenoceptors in comparison with that measured in rats that were group housed and never handled. Exposure of rats to more severe Stressors did reduce significantly the binding of125I-iodopindolol (125I-IPIN) to beta1 adrenoceptors, but not beta2 adrenoceptors, only in the lateral and basolateral nuclei of the amygdala.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abercrombie ED, Jacobs BL (1988) Systemic naloxone administration potentiates locus coeruleus noradrenergic neuronal activity under stressful but not non-stressful conditions. Brain Res 441: 362–366

    PubMed  Google Scholar 

  • Anisman H, Zacharko RM (1982) Depression: the predisposing influence of stress. Behav Brain Sci 5: 89–137

    Google Scholar 

  • Areso P, Gambarana C, Tejani-Butt S, Hauptmann M, Frazer A (1989) Antidepressant-induced down regulation of central beta1 adrenoceptors: regionally selective effects. Soc Neurosci Abstr 15: 1318

    Google Scholar 

  • Artymyshyn RP, Wolfe BB (1987) The use of high activity3(H)standards to quantitate125 (I) film autoradiography. Soc Neurosci Abstr 13: 710

    Google Scholar 

  • De Boer SF, Koopmans SJ, Slangen JL, Van der Gugten J (1990) Plasma catecholamine, corticosterone and glucose responses to repeated stress in rats: effect of interstressor interval length. Physiol Behav 47: 1117–1124

    PubMed  Google Scholar 

  • Duncan GE, Breese GR, Criswell H, Stumpf WE, Mueller RA, Covey JB (1986) Effects of antidepressant drugs injected into the amygdala on behavioural responses of rats in the forced swim test. J Pharmacol Exp Ther 238: 758–762

    PubMed  Google Scholar 

  • Farska I, Krulik R, Silva D (1988) Effect of immobilization stress on tricyclic antidepressant binding and serotonin uptake in rats. Eur J Pharmacol 149: 363–366

    PubMed  Google Scholar 

  • Frazer A, Conway P (1984) Pharmacological mechanism of action of antidepressants. Psychiatr Clin North Am 7: 575–585

    PubMed  Google Scholar 

  • Gorka Z, Ossowska K, Stach R (1979) The effect of unilateral amygdala lesion on the imipramine action in behavioural despair in rats. J Pharm Pharmacol 31: 647–648

    PubMed  Google Scholar 

  • Hensler JG, Ordway GA, Gambarana G, Areso P, Frazer A (1991) Serotonergic neurons do not influence the regulation of beta-adrenoceptors induced either by desipramine or isoproterenol. J Pharmacol Exp Ther 256: 656–664

    PubMed  Google Scholar 

  • Horovitz ZP (1966) The amygdala and depression. In: Garattini S, Dukes M (eds) Antidepressant drugs. Excerpta Medica, Amsterdam, pp 121–129

    Google Scholar 

  • Ida Y, Tsuda A, Tsujimaru S, Satoh M, Tanaka M (1990) Pentobarbital attenuates stress-induced increases in noradrenaline release in specific brain regions of rats. Pharmacol Biochem Behav 36: 953–956

    PubMed  Google Scholar 

  • Kellar KJ, Bergstrom DA (1983) Electroconvulsive shock: effects on biochemical correlates of neurotransmitter receptors in rat brain. Neuropharmacology 22: 401–406

    PubMed  Google Scholar 

  • Molina VA, Volosin M, Cancela L, Keller E, Murua VS, Basso AM (1990) Effect of chronic variable stress on monoamine receptors: influence of imipramine administration. Pharmacol Biochem Behav 35: 335–340

    PubMed  Google Scholar 

  • Nomura S, Watanabe M, Ukei N, Nakazawa T (1981) Stress and beta-adrenergic receptor binding in the rat's brain. Brain Res 224: 199–203

    PubMed  Google Scholar 

  • Ordway GA, Gambarana C, Frazer A (1988) Quantitative autoradiography of central beta adrenoceptor subtypes: comparison of the effects of chronic treatment with desipramine or centrally administered l-isoproterenol. J Pharmacol Exp Ther 247: 379–389

    PubMed  Google Scholar 

  • Ordway GA, Gambarana C, Tejani-Butt SM, Areso P, Hauptmann M, Frazer A (1991) Preferential reduction of the binding of125I-iodopindolol to beta1 adrenoceptors in the amygdala of the rat following antidepressant treatments. J Pharmacol Exp Ther 257: 681–690

    PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Rainbow TC, Parsons B, Wolfe BB (1984) Quantitative autoradiography of beta1 and beta2 adrenergic receptors in rat brain. Proc Natl Acad Sci (USA) 81: 1585–1589

    Google Scholar 

  • Riva MA, Creese I (1989) Comparison of two putatively selective radioligands for labeling central nervous system beta-adrenergic receptors: inadequacy of (3 H) dihydroalprenolol. Mol Pharmacol 36: 201–210

    PubMed  Google Scholar 

  • Rossetti ZL, Portas C, Pani L, Carboni S, Gessa GL (1990) Stress increases noradrenaline release in the rat frontal cortex: prevention by diazepam. Eur J Pharmacol 176: 229–231

    PubMed  Google Scholar 

  • Roth KA, Mefford IM, Barchas JD (1982) Epinephrine, norepinephrine, dopamine and serotonin: differential effects of acute and chronic stress on regional brain amines. Brain Res 239: 417–424

    PubMed  Google Scholar 

  • Sarter M, Markowitsch HJ (1985) Involvement of the amygdala in learning and memory: a critical review, with emphasis on anatomical relations. Behav Neurosci 99: 342–380

    PubMed  Google Scholar 

  • Stockmeier CA, Kellar KJ (1989) Serotonin depletion unmasks serotonergic component of (3H) dihydroalprenolol binding in rat brain. Mol Pharmacol 36: 903–911

    PubMed  Google Scholar 

  • Stone EA (1979) Reduction by stress of norepinephrine-stimulated accumulation of cyclic AMP in rat cerebral cortex. J Neurochem 32: 1335–1337

    PubMed  Google Scholar 

  • Stone EA (1981) Mechanism of stress-induced subsensitivity to norepinephrine. Pharmacol Biochem Behav 14: 719–723

    PubMed  Google Scholar 

  • Stone EA (1983) Reduction in cortical beta adrenergic receptor density after chronic intermittent food deprivation. Neurosci Lett 40: 33–37

    PubMed  Google Scholar 

  • Stone EA, Platt JE (1982) Brain adrenergic receptors and resistance to stress. Brain Res 237: 405–414

    PubMed  Google Scholar 

  • Stone EA, Slucky AV, Platt JE (1985) Reduction of the cyclic adenosine 3′,5′-monophosphate response to catecholamines in rat brain slices after repeated restraint stress. J Pharmacol Exp Ther 233: 382–388

    PubMed  Google Scholar 

  • Tanaka M, Kohno Y, Nakagawa R, Ida Y, Takeda S, Nagasaki N (1982) Time-related differences in noradrenaline turnover in rat brain regions by stress. Pharmacol Biochem Behav 16: 315–319

    PubMed  Google Scholar 

  • Tanaka M, Ida Y, Tsuda A (1988) Naloxone, given before but not after stress exposure, enhances stress-induced increases in regional brain noradrenaline release. Pharmacol Biochem Behav 29: 613–616

    PubMed  Google Scholar 

  • Torda T, Yamaguchi I, Hirata F, Kopin IJ, Axelrod J (1981) Mepacrine treatment prevents immobilization-induced desensitization of beta-adrenergic receptors in rat hypothalamus and brain stem. Brain Res 205: 441–444

    PubMed  Google Scholar 

  • Tsuda A, Tanaka M, Kohno Y, Nishikawa T, Iimori K, Nakagawa R, Hoaki Y, Ida Y, Nagasaki N (1982) Marked enhancement of noradrenaline turnover in extensive brain regions after activity-stress in rats. Physiol Behav 29: 337–341

    PubMed  Google Scholar 

  • Weiss JM, Simson PG, Hoffman LJ (1986) Infusion of adrenergic receptor agonists and antagonists into the locus coeruleus and ventricular system of the brain. Effects on swim-motivated and spontaneous motor activity. Neuropharmacology 25: 367–384

    PubMed  Google Scholar 

  • Wolfe BB, Harden K, Sporn JR, Molinoff PB (1978) Presynaptic modulation of beta-adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J Pharmacol Exp Ther 201: 446–457

    Google Scholar 

  • Yokoo H, Tanaka M, Tanaka T, Tsuda A (1990) Stress-induced increase in noradrenaline release in the rat hypothalamus assessed by intracranial microdialysis. Experienta 46: 290–292

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Areso, M.P., Frazer, A. Effect of repeated administration of novel stressors on central beta adrenoceptors. J. Neural Transmission 86, 229–235 (1991). https://doi.org/10.1007/BF01250709

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01250709

Keywords

Navigation