Skip to main content
Log in

Pathophysiology of acute obstructive cholangitis

  • Published:
Journal of Hepato-Biliary-Pancreatic Surgery

Abstract

Because acute obstructive cholangitis is life-threatening, understanding of the pathophysiology of this disease is required to establish a medical treatment. Experimental results indicate that obstruction of the bile duct itself does not induce acute cholangitis, but infection of gut-derived bacteria such asEscherichia coli into the bile triggers fatal septicemia, which leads to liver injury and renal failure. In obstructive cholangitis, functional changes in sinusoidal lining cells are often seen. Mediators produced by Kupffer cells, endothelial cells, and stellate cells may modulate inflammatory reactions especially in the periportal area of bile duct ligated animals. In addition, proliferation of bile duct epithelial cells is induced by bile duct ligation. Recently, nitric oxide has been recognized as an important mediator of multiple organ failure. Actually, when bile duct ligated animals are treated with endotoxin, metabolites of nitric oxide in blood and plasma increase, indicating that nitric oxide may take part in the pathophysiology of acute obstructive cholangitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reynolds BM, Dargan EL (1959) Acute obstructive cholangitis, a distinct clinical syndrome. Ann Surg 150:299–303

    PubMed  Google Scholar 

  2. Kalser MH, Block MA (1985) Cholangitis: clinical aspects and medical management. In: Berk JE, Haubrich MS, Kalser MH, Roth JLA, Schaffner F (eds) Gastroenterology, 4th edn. Saunders, Philadelphia, pp 3717–3731

    Google Scholar 

  3. Douglas TF, Shaun R, Peter HS, et al. (1957) Activation of the properdin pathway of complement in patients with gram-negative bacteremia. N Eng J Med 292:937–940

    Google Scholar 

  4. Boey JH, Way LW (1980) Acute cholangitis. Ann Surg 191:264–270

    PubMed  Google Scholar 

  5. O'Connor MJ, Schwartz ML, McQuarrie DG, Sumer HW (1982) Acute bacterial cholangitis: an analysis of clinical manifestation. Arch Surg 117:437–441

    PubMed  Google Scholar 

  6. Shimada K, Noro T, Inamatsu T, Urayama K, Adachi K (1981) Bacteriology of acute obstructive suppurative cholangitis of the aged. J Clin Microbiol 14:522–526

    PubMed  Google Scholar 

  7. Kinoshita H, Hirohashi K, Igawa S, Nagata E, Sakai K (1984) Cholangitis. World J Surg 8:963–969

    PubMed  Google Scholar 

  8. Williams RD, Fish JC, Williams DD (1967) The significance of biliary pressure. Arch Surg 95:374–379

    PubMed  Google Scholar 

  9. Huang T, Bass JS, Williams RD (1969) The significance of biliary tract pressure in cholangitis. Arch Surg 95:629–632

    Google Scholar 

  10. Fleischner G. Arias IM (1970) Recent advances in bilirubin formation, transport, metabolism and excretion. Am J Med 49:576–589

    PubMed  Google Scholar 

  11. Stocker R, Yamamoto Y, McDonagh AF (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046

    PubMed  Google Scholar 

  12. Inoue M, Hirata E, Morino Y, Nagase S, Chowdhury JR, Chowdhury NR, Arias IM (1985) The role of albumin in the hepatic transport of bilirubin: studies in mutant analbuminemic rats. J Biochem 97:737–743

    PubMed  Google Scholar 

  13. Sugi K. Inoue M. Morino Y, Sato T (1989) Effect of obstructive jaundice on the fate of a nephrophilic organic anion in the rat. Biochem Biophys Acta 987:217–221

    PubMed  Google Scholar 

  14. Hofmann A, Small D (1967) Detergent properties of bile salts: correlation with physiologic function. Ann Rev Med 18:333–376

    PubMed  Google Scholar 

  15. Brouwer A, Wisse E, Knook DL (1988) Sinusoidal endothelial cells and perisinusoidal fat storing cells. In: Arias IM, Jacoby WB, Popper H, Schachter D, Shafritz DA (eds) The liver: biology and pathobiology, 2nd edn. Raven, New York, pp 665–682

    Google Scholar 

  16. Rieder H, Meyer zum Buschenferde K-H, Ramadori G (1922) Functional spectrum of sinusoidal endothelial liver cells. Filtration, endocytosis, synthetic capacities and intercellular communication. J Hepatol 15:237–250

    Google Scholar 

  17. De Bleser PJ, Braet F, Lovisetti P, Vanderkerken K, Wisse E, Geerts A (1994) Cell biology of liver endothelial cells and Kupffer cells. Gut 35:1509–1516

    PubMed  Google Scholar 

  18. Wake K, Decker K, Kirn A, Knook DL, McCuskey RS, Bouwens L, Wisse E (1983) Cell biology and kinetics of Kupffer cells in the liver. Int Rev Cytol 37:531–543

    Google Scholar 

  19. Decker K (1990) Biologically active products of stimulated liver macrophages (Kupffer cells). Eur J Biochem 192:245–261

    PubMed  Google Scholar 

  20. Billiar RD, Curran RD, Stuehr DJ, Stadler J, Simmons RL, Murray SA (1989) An L-arginine dependent mechanism mediates Kupffer cell inhibition of hepatocyte protein synthesis in vitro. J Exp Med 169:1467–1472

    PubMed  Google Scholar 

  21. Curran RD, Billiar TR, Stuehr DJ, Hoffman RA, Simmons RL (1989) Hepatocytes produce nitrogen oxide from L-arginine in response to inflammatory products of Kupffer cells. J Exp Med 170:1769–1774

    PubMed  Google Scholar 

  22. Gressner AM (1994) Perisinusoidal lipocytes and fibrogenesis. Gut 35:1331–1333

    PubMed  Google Scholar 

  23. Wake K (1980) Perisinusoidal stellate cells (fat storing cell, interstitial cell, lipocyte); their related structure in and around the liver sinusoids and vitamin A storing cells in extrahepatic organs. Int Rev Cytol 166:303–353

    Google Scholar 

  24. Friedman SL (1993) The cellular basis of hepatic fibrosis. N Engl J Med 328:1828–1835

    PubMed  Google Scholar 

  25. Friedman SL, Roll FJ, Boyles J, Bissell DM (1985) Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci USA 82:8681–8685

    PubMed  Google Scholar 

  26. Blomhoff R, Wake K (1985) Perisinusoidal stellate cells of the liver: important roles in retinol metabolism and fibrosis. FASEB J 5:271–277

    Google Scholar 

  27. Hoffmann R, Grewe M, Estler H-C, Schultz-Specking A, Decker K (1994) Regulation of tumor necrosis factor-α-mRNA synthesis and distribution of tumor necrosis factor-α-mRNA synthesizing cells in rat liver during experimental endotoxemia. J Hepatol 20:122–128

    PubMed  Google Scholar 

  28. Fausto N. Liver stem cells. In: Arias IM, Boyer JL, Fausto N, Schachter D, Shafritz DA (eds) The liver: biology and pathobiology, 3rd edn. Raven, New York, pp 1501–1518

  29. Wang Q, Jacobs J, DeLeo J, Kruszyna R, Smith R, Wilcox D (1991) Nitric oxide hemoglobin in mice and rats endotoxin shock. Life Sci 49:PL55–60

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kawada, N., Takemura, S., Minamiyama, Y. et al. Pathophysiology of acute obstructive cholangitis. J Hep Bil Pancr Surg 3, 4–8 (1996). https://doi.org/10.1007/BF01212771

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01212771

Key words

Navigation