Skip to main content
Log in

Reassessing the transformation step in factor theory. The case for a non-orthogonal transformation matrix

  • Algorithmic Approaches and Miscellaneous Topics
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The existing factor rotational methods (an assortment of orthogonal, oblique and simplex techniques) are assessed for their potential to be generalized for use at higher dimensions (i.e. above threefold factor space). An answer is sought to the problem of why the application of an orthogonal rotation results in mathematical solutions (those containing negative entries) rather than all positive solutions having physical and chemical meaning. Such positive solutions will be within the limits of experimental error if non-perfect data is used. An evaluation of a methodological improvement to an algorithm on factor analysis based on the optimization of them(m - 1) independent variables of a transformation matrix T′ ofm factors is made, and a case is presented for its introduction as a realistic alternative to the established methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Muller and D. Steele, Spectrochim. Acta 46A (1990)817.

    Google Scholar 

  2. A. Muller and D. Steele, Spectrochim. Acta 46A (1990)1177.

    Google Scholar 

  3. A. Muller, to be published.

  4. N. Ohta, Anal. Chem. 45 (1973)553.

    Google Scholar 

  5. Z.Z. Hugus, Jr. and A.A. El-Awady, J. Phys. Chem. 75 (1971)2954.

    Google Scholar 

  6. J.J. Kankare, Anal. Chem. 42 (1970)1322.

    Google Scholar 

  7. P.C. Gillette, J.B. Lando and J.L. Koenig, Anal. Chem. 55 (1983)630.

    Google Scholar 

  8. M.A. Sharaf and B.R. Kowalski, Anal. Chem. 53 (1981)518.

    Google Scholar 

  9. M.A. Sharaf and B.R. Kowalski, Anal. Chem. 54 (1982)1291.

    Google Scholar 

  10. D.W. Osten and B.R. Kowalski, Anal. Chem. 56 (1984)991.

    Google Scholar 

  11. R.A. Gilbert, J.A. Llewellyn, W.E. Swartz and J.W. Palmer, Appl. Spectrosc. 36 (1982)428.

    Google Scholar 

  12. P.J. Gemperline, J. Chemometrics 3 (1989)549.

    Google Scholar 

  13. S.D. Brown, T.Q. Barber, R.J. Larivee, S.L. Monfre and H.R. Wilk, Anal. Chem. 60 (1988)253R.

    Google Scholar 

  14. K.R. Beebe and B.R. Kowalski, Anal. Chem. 59 (1987)1007A.

    Google Scholar 

  15. E.R. Malinowski and D.G. Howery,Factor Analysis in Chemistry (Wiley, UK, 1980).

    Google Scholar 

  16. B.F.J. Manly,Multivariate Statistical Methods. A Primer (Chapman and Hall, London, 1986).

    Google Scholar 

  17. R.W. Rozett and E.M. Petersen, Anal. Chem. 47 (1975)1301.

    Google Scholar 

  18. F.J. Luk, SIAM J. Sci. Stat. Comput. 5 (1984)764.

    Google Scholar 

  19. M. Forina, C. Armanino, S. Lanteri and R. Leardi, J. Chemometrics 3 (1988)115.

    Google Scholar 

  20. C.G. Swain, H.E. Bryndza and M.S. Swain, J. Chem. Inf. Comput. Sci. 19 (1979)19.

    Google Scholar 

  21. D.H. Lowenthal and K.A. Rahn, Atm. Environ. 21 (1987)2005.

    Google Scholar 

  22. P.C. Gillette, J.B. Lando and J.L. Koenig,Fourier Transform Infrared Spectroscopy (Application to Chemical Systems), Vol. 4, ed. J.R. Ferraro and L.J. Basile (Academic Press, New York, 1985).

    Google Scholar 

  23. P.H. Weiner, E.R. Malinowski and A.R. Levinstone, J. Phys. Chem. 74 (1970)4537.

    Google Scholar 

  24. P.K. Hopke, D.J. Alpert and B.A. Roscoe, Comput. Chem. 7 (1983)149.

    Google Scholar 

  25. B.A. Roscoe and P.K. Hopke, Comput. Chem. 5 (1981)1.

    Google Scholar 

  26. E.R. Malinowski, ASTM Special Technical Publication, Comp. Quant. IR Anal. 934 (1987)155.

    Google Scholar 

  27. E.R. Malinowski, Anal. Chim. Acta 103 (1978)339.

    Google Scholar 

  28. M. McCue and E.R. Malinowski, Appl. Spectrosc. 37 (1983)463.

    Google Scholar 

  29. E.R. Malinowski and M. McCue, Anal. Chem. 49 (1977)284.

    Google Scholar 

  30. R.P. Gluch, Amer. Lab (USA) 14 (1982)98.

    Google Scholar 

  31. C. Po Wang and T.L. Isenhour, Appl. Spectrose. 41 (1987)185.

    Google Scholar 

  32. M. Ruprecht and J.T. Clerc, J. Chem. Inf. Comput. Sci. 25 (1985)241.

    Google Scholar 

  33. S.N. Deming and S.L. Morgan, Anal. Chem. 45 (1973)278A.

    Google Scholar 

  34. H. Martens, Anal. Chim. Acta 112 (1979)423.

    Google Scholar 

  35. D.J. Leggett, Anal. Chem. 49 (1977)276.

    Google Scholar 

  36. O.S. Borgen and B.R. Kowalski, Anal. Chim. Acta 174 (1985)1.

    Google Scholar 

  37. J. Chen and L. Hwang, Anal. Chim. Acta 133 (1981)271.

    Google Scholar 

  38. B. Vandeginste, Pure Appl. Chem. 55 (1983)2007.

    Google Scholar 

  39. B. Vandeginste, R. Essers, T. Bosman, J. Reijnen and G. Kateman, Anal. Chem. 57 (1985)971.

    Google Scholar 

  40. Numerical Algorithms Group Ltd., Mayfield, 256 Banbury Road, Oxford OX2 7DE, UK.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muller, A. Reassessing the transformation step in factor theory. The case for a non-orthogonal transformation matrix. J Math Chem 7, 363–383 (1991). https://doi.org/10.1007/BF01200833

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01200833

Keywords

Navigation