Skip to main content
Log in

A note on the existence, uniqueness and symmetry of par-balanced realizations

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We give a proof of the realization theorem of N.J. Young which states that analytic functions which are symbols of bounded Hankel operators admit par-balanced realizations. The main tool used in this proof is the induced Hilbert spaces and a lifting lemma of Kreîn-Reid-Lax-Dieudonné. Alternatively one can use the Loewner inequality. A short proof of the uniqueness of par-balanced realizations is included. As an application, it is proved that par-balanced realizations of real symmetric transfer functions areJ-self-adjoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Aronszajn: Theory of reproducing kernels,Trans. Amer. Math. Soc.,68 (1950), 337–404.

    Google Scholar 

  2. L. de Branges:Hilbert Spaces of Entire Analytic Functions. Prentice-Hall, Englewood Cliffs, N.J. 1968.

    Google Scholar 

  3. L. de Branges, J. Rovnyak: Canonical models in quantum mechanics, inPerturbation Theory and its Applications in Quantum Mechanics, Proc. Adv. Sem. Math. Res. Center, Madison WS 1965, pp. 295–392.

  4. T. Constantinescu, A. Gheondea. Elementary rotations of operators in Kreîn spaces,J. Operator Theory,29 (1993), 167–203.

    Google Scholar 

  5. T. Constantinescu, A. Gheondea: Representations of Hermitian Kernels by means of Kreîn spaces, preprint no. 15, Institutul de Matematică al Academiei Române, Bucureşti 1996.

    Google Scholar 

  6. J. Dieudonné: Quasi-hermitian operators, inProceedings of International Symposium on Linear Spaces, Jerusalem 1961, pp. 115–122.

  7. A. Dijksma, H. Langer, H. de Snoo: Unitary colligations in Kreîn spaces and their role in extension theory of isometric and symmetric linear relations in Hilbert spaces, inFunctional Analysis II, Lecture Notes in Mathematics, no1242 Springer Verlag, Berlin-Heidelberg-New York 1987, pp. 123–143.

    Google Scholar 

  8. M.A. Dritschel: A method for constructing invariant subspaces for some operators on Kreîn spaces, inOperator Theory: Advances and Applications, Vol. 61, Birkhäuser Verlag, Basel 1993.

    Google Scholar 

  9. P.A. Fillmore, J.P. Williams: On operator ranges,Adv. in Math. 7 (1971), 254–281.

    Google Scholar 

  10. P.A. Fuhrmann:Linear Systems and Operators in Hilbert Space, McGraw-Hill, 1981.

  11. A. Gheondea, R.J. Ober: CompletelyJ-positive linear systems of finite order,Math. Nachr.,203 (1999), 75–101.

    Google Scholar 

  12. K. Glover, R.F. Curtain, J.R. Partington: Realisation and approximation of linear infinite dimensional systems with error bounds,SIAM J. Control and Optimization,26 (1988), 863–898.

    Google Scholar 

  13. M.G. Kreîn: On linear completely continuous operators in functional spaces with two norms, (Ukrainian),Zbirnik Prac. Inst. Mat. Akad. Nauk USSR,9 (1947), 104–129.

    Google Scholar 

  14. P.D. Lax: Symmetrizable linear transformations,Comm. Pure Appl. Math. 7 (1954). 633–647.

    Google Scholar 

  15. A.V. Megretskii, V.V. Peller, S.R. Treil: The inverse spectral problem for self-adjoint Hankel operators,Acta Mathematica,174 (1995), 241–309.

    Google Scholar 

  16. B.C. Moore: Principal component analysis in linear systems: controllability, observability and model reduction,IEEE Transactions on Automatic Control,26 (1981), 17–32.

    Google Scholar 

  17. R.J. Ober, S. Montgomery-Smith: Bilinear transformation of infinitedimensional state-space systems and balanced realizations of nonrational transfer functions,SIAM Journal on Control and Optimization,28 (1990), 438–465.

    Google Scholar 

  18. W.T. Reid: Symmetrizable completely continuous linear transformations in Hilbert space,Duke Math. J. 18 (1951), 41–56.

    Google Scholar 

  19. L. Schwartz: Sous espaces Hilbertiens d'espaces vectoriel topologiques et noyaux associés (noyaux reproduisants).J. d'Analyse Math. 13 (1964), 115–256.

    Google Scholar 

  20. J. Weidmann:Linear Operators in Hilbert space, Springer Verlag, Berlin-Heidelberg-New-York 1980.

    Google Scholar 

  21. N.J. Young: Balanced realizations in infinite dimensions, inOperator Theory: Advances and Applications, Vol.19, Birkhäuser Verlag, Basel, 1986 pp. 449–471.

    Google Scholar 

  22. N.J. Young: Private communication.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported in part by the Romanian Academy grant GAR-6645/1996.

This research was supported in part by NSF grant DMS-9501223.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gheondea, A., Ober, R.J. A note on the existence, uniqueness and symmetry of par-balanced realizations. Integr equ oper theory 37, 423–436 (2000). https://doi.org/10.1007/BF01192830

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01192830

Mathematics Subject Classification

Navigation