Skip to main content
Log in

Sex chromosome associated satellite DNA: Evolution and conservation

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Satellites visible in female but not in male DNA were isolated from the snakesElaphe radiata (satellite IV, p = 1.708 g · cm−3) andBungarus fasciatus (BK1 minor, p=1.709 g · cm−3). The satellites cross hybridize. Hybridization of3H labelled nick translated BK minor satellite DNA with the total male and female DNA and/or chromosomes in situ of different species of snakes revealed that its sequences are conserved throughout the snake group and are mainly concentrated on the W chromosome. Snakes lacking sex chromosomes do possess related sequences but there is no sex difference and visible related satellites are absent. The following conclusions have been reached on the basis of these results. 1. The W chromosome associated satellite DNA is related to similar sequences scattered in the genome. 2. The origin and increment in the number of the W satellite DNA sequence on the W chromosome is associated with the heterochromatinization of the W. 3. Satellite sequences have become distributed along the length of the W and resulted in morphological differentiation of sex chromosomes. 4. Evolutionary conservation of W satellite DNA strongly suggests that functional constraints may have limited sequence divergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birnstiel, M.L., Sells, B.H., Purdom, I.F.: Kinetic complexity of RNA molecules. J. molec. Biol.63, 21–39 (1972)

    Article  PubMed  Google Scholar 

  • Bowen, S.T.: The genetics of Artemia salina. V. Crossing-over between the X and Y chromosomes. Genetics52, 695–710 (1965)

    PubMed  Google Scholar 

  • Bull, J.J., Vogt, R.C.: Temperature-dependent sex determination in turtles. Science206, 1186–1188 (1979)

    PubMed  Google Scholar 

  • Charlesworth, B.: Model for evolution of Y chromosomes and dosage compensation. Proc. nat. Acad. Sci. (Wash.)75, 5618–5622 (1978)

    Google Scholar 

  • Denhardt, D.T.: A membrane filter technique for the detection of complementary DNA. Biochem. biophys. Res. Comm.23, 641–646 (1966)

    PubMed  Google Scholar 

  • Gillespie, D., Spiegelman, S.: A quantitative assay for DNA-RNA hybrids with DNA immobilised on a membrane. J. molec. Biol.12, 829–842 (1965)

    PubMed  Google Scholar 

  • Gorman, G.C.: The chromosomes of the reptilia, a cytotaxonomic interpretation. In: Cytotaxonomy and vertebrate evolution (A.B. Chiarelli and E. Kapanna, eds.), pp. 350–424. New York: Academic Press 1973

    Google Scholar 

  • Jensen, R.H., Davidson, N.: Spectrophotometric, potentiometric and density gradient ultracentrifugation studies of the binding of silver ion by DNA. Biopolymers4, 17–32 (1966)

    Google Scholar 

  • Jones, K.W.: In situ hybridization. In: New technique in biophysics and cell biology (R.H. Pain and B.J. Smith, eds.), pp. 29–66, London: J. Wiley and Sons 1973

    Google Scholar 

  • Keyl, H.G.: Duplikationen von Untereinheiten der chromosomalen DNS während der Evolution von Chironomus thummi. Chromosoma (Berl.),17, 139–180 (1965)

    Google Scholar 

  • Maio, J.J., Brown, F.L., Musich, P.R.: Subunit structure of chromatin and the organization of eukaryotic highly repetitive DNA: Recurrent periodicities and models for the evolutionary origins of repetitive DNA. J. molec. Biol.117, 637–655 (1977)

    PubMed  Google Scholar 

  • Marmur, J.: A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. molec. Biol.3, 208–218 (1961)

    Google Scholar 

  • Muller, H.J.: A gene for the fourth chromosome of Drosophila. J. exp. Zool.17, 325–336 (1914)

    Google Scholar 

  • Muller, H.J.: Genetic variability, twin hybrids and constant hybrids, in a case of balanced lethal factors. Genetics3, 422–499 (1918)

    Google Scholar 

  • Ohno, S.: Sex chromosomes and sex-linked genes. Berlin-Heidelberg-New York: Springer 1967

    Google Scholar 

  • Ray-Chaudhuri, S.P., Singh, L.: DNA replication pattern in sex-chromosomes of snakes. Nucleus (Calcutta)15, 200–210 (1972)

    Google Scholar 

  • Ray-Chaudhuri, S.P., Singh, L., Sharma, T.: Sexual dimorphism in simatic interphase nuclei of snakes. Cytogenetics91, 410–423 (1970)

    Google Scholar 

  • Ray-Chaudhuri, S.P., Singh, L., Sharma, T.: Evolution of sex chromosomes and formation of W chromatin in snakes. Chromosoma (Berl.)33, 239–251 (1971)

    Google Scholar 

  • Rigby, P.W.J., Dieckmann, M., Rhodes, C., Berg, P.: Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. molec. Biol.113, 237–251 (1977)

    PubMed  Google Scholar 

  • Salser, W., Bowen, S., Browne, D., El Adli, F., Fedoroff, N., Fry, K., Heindell, H., Paddock, G., Poon, R., Wallace, B., Whitcome, P.: Investigation of the organisation of mammalian chromosomes at the DNA sequence level. Fed. Proc.35, 23–35 (1976)

    PubMed  Google Scholar 

  • Schmid, M., Olert, J., Klett, C.: Chromosome banding in Amphibia. III. Sex chromosomes in Triturus. Chromosoma (Berl.)71, 29–55 1979)

    Google Scholar 

  • Singh, L.: Evolution of karyotypes in snakes. Chromosoma (Berl.)38, 185–236 (1972 a)

    Google Scholar 

  • Singh, L.: Multiple W chromosome in a sea snake, Enhydrina schistosa Daudin. Experientia (Basel)28, 95–97 (1972 b)

    Google Scholar 

  • Singh, L.: Chromosomes of six species of Indian snakes. Herpetologica30, 419–429 (1974)

    Google Scholar 

  • Singh, L.: Study of mitotic and meiotic chromosomes in seven species of lizards. Proc. Zool. Soc. Calcutta27, 57–79 (1974)

    Google Scholar 

  • Singh, L., Sharma, T., Ray-Chaudhuri, S.P.: Chromosomes and the classification of snakes of the family Boidae. Cytogenetics7, 161–168 (1968 a)

    PubMed  Google Scholar 

  • Singh, L., Sharma, T., Ray-Chaudhuri, S.P.: W chromosome in the Indian water snake (checkered keel back) Natrix piscator (Colubridae). Experientia (Basel)24, 79–80 (1968 b)

    Google Scholar 

  • Singh, L., Sharma, T., Ray-Chaudhuri, S.P.: Multiple sex-chromosomes in the common Indian krait, Bungarus caeruleus Schneider. Chromosoma (Berl.)31, 386–391 (1970)

    Google Scholar 

  • Singh, L., Purdom, I.F., Jones, K.W.: Satellite DNA and evolution of sex chromosomes. Chromosoma (Berl.)59, 43–62 (1976)

    Google Scholar 

  • Singh, L., Purdom, I.F., Jones, K.W.: Effect of different denaturing agents on the detectability of specific DNA sequences of various base compositions by in situ hybridization. Chromosoma (Berl.)60, 377–389 (1977)

    Google Scholar 

  • Singh, L., Purdom, I.F., Jones, K.W.: Behaviour of sex chromosome associated satellite DNAs in somatic and germ cells in snakes. Chromosoma (Berl.)71, 167–181 (1979 a)

    Google Scholar 

  • Singh, L., Ray-Chaudhuri, S.P., Majumdar, K., Purdom, I.F., Jones, K.W.: Sex specific chromosome polmorphisms in the common Indian krait, Bungarus caeruleus Schneider (Ophidia, Elapidae). Chromosoma (Berl.)73, 93–108 (1979 b)

    Google Scholar 

  • Smith, G.P.: Evolution of repeated DNA sequences by unequal cross-overs. Science191, 528–535 (1976)

    PubMed  Google Scholar 

  • Sumner, A. T.: A simple technique for demonstrating contromeric heterochromatin. Exp. Cell Res.75, 304–306 (1972)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, L., Purdom, I.F. & Jones, K.W. Sex chromosome associated satellite DNA: Evolution and conservation. Chromosoma 79, 137–157 (1980). https://doi.org/10.1007/BF01175181

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01175181

Keywords

Navigation