Skip to main content
Log in

Principal vectors of crystallographic groups and applications

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

For a crystallographic group\(\mathfrak{G}\) acting on ann-dimensional Euclidean space we consider the\(\mathfrak{G}\)-invariant linear elliptic differential operatorP with constant coefficients and to it the\(\mathfrak{G}\)-automorphic eigenvalue problemP [ω] + μψ = 0. N(λ) is the number of all eigenvaluesμ smaller than or equal to the “frequency bound”λ q (q: order ofP). Earlier we found the asymptotic estimationN(λ) ∼ c0 · λn + c1 · λn−1 (c 0,c 1: certain volumina). Furthermore,N(λ) was interpreted as the number of so-called principal classes of principal lattice vectors within a convex domain. In this paper we demonstrate these results for the casen = 2 for two representative crystallographic groups\(\mathfrak{G}\) and the assigned lattices. Above all we demonstrate a counting method for an exact estimation ofN(λ) if a is not too big. In an analogous way we can treat all the 230 space groups of crystallography. It will be seen that these applications are brought about by the so-called principal vectors of these lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.L.Altmann,Induced Representations for Crystals and Molecules (Akademic Press, 1977).

  2. K. Balasubramanian, Stud. Phys. Theor. Chem. 23 (1983).

  3. M. Belger, Eigenvalue distribution of invariant linear second order elliptic differential operators with constant coefficients, Zeit. Anal. ihre Anwdgn., to appear.

  4. M. Belger, SERDICA, Bulg. Matematicae Publ. 18 (1992) 260.

    Google Scholar 

  5. M. Belger and L. Ehrenberg, Theorie u. Anwendung d. Symmetriegruppen (MINÖL Bd. 23, Vlg. H. Deutsch, Thun-Ffm.,1980).

  6. P.H. Berard, Invent. Math. 58 (1980) 179.

    Google Scholar 

  7. J.J. Burkhardt, Die Bewegungsgruppen der Kristallographie (Birkhäuser, Basel-Stuttgart, 1966).

    Google Scholar 

  8. R. Courant, Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik, Math. Zeit. 7 (1920).

  9. P. Günther, Zeit. Anal. ihre Anwdgn. l (1982) 12.

    Google Scholar 

  10. V. Guillemin, Some Classical Theorems in Spectral Theory revisited (Princeton University Press, 1978).

  11. International Tables for Crystallography, Vol. A: Space Group Symmetry, 2nd. Rev. Ed. (D. Reidel, Dordrecht, 1987).

  12. E. Landau,AusgewählteAbhandlungen zur Gitterpunktlehre (DVW, Berlin, 1962).

    Google Scholar 

  13. D.B. Litvin, Phys. Rev. B21 (1980) 3184.

    Google Scholar 

  14. P.D. Lax and R.S. Phillips, J. Funct. Anal. 46 3 (1982).

  15. R. Melrose, Weyl's conjecture for manifolds with concave boundary,Proc. Symp. Pure Math. 36 (Amer. Math. Soc. Providence, 1980).

  16. E. Schulze,Metallphysik (Akademie-Verlag, Berlin, 1967).

    Google Scholar 

  17. H. Weyl, Über das Spektrum der Hohlraumstrahlung, J. r.u.a. Math. 141(1912).

  18. H. Weyl, Über die asymptotische Verteilung der Eigenwerte (Göttinger Nachrichten, 1911) pp.110–117.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belger, M. Principal vectors of crystallographic groups and applications. J Math Chem 16, 367–388 (1994). https://doi.org/10.1007/BF01169218

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01169218

Keywords

Navigation