Skip to main content
Log in

A quantitative representation of molecular surface shape. I: Theory and development of the method

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The importance of molecular shape in many areas of biochemistry and biomolecular interactions is well recognised. In spite of this a rigorous and widely applicable means of defining and quantifying molecular shape has not been available. This paper, the first of a series of papers, presents a new method of quantifying molecular “surface” shape. The development of the technique, based on Fourier shape descriptors is discussed in some depth including the computer programs written to implement and test the method. A subsequent paper will present results obtained from the application of the new quantitative molecular shape descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. Mezey, J. Comp. Chem. 8 (1987) 462.

    Google Scholar 

  2. A. Verloop, W. Hoogenstraaten and J. Tipker, Drug Design 7 (1976) 165.

    Google Scholar 

  3. G.A. Arteca and P.G. Mezey, J. Comp. Chem. 9 (1988) 554.

    Google Scholar 

  4. S.E. Leicester, Quantitative molecular surface shape analysis using spherical harmonic Fourier shape descriptors, Ph.D. Thesis, University of London (1989).

  5. S.E. Leicester, J.L. Finney and R.P. Bywater, J. Mol. Graph. 6 (1988) 104.

    Google Scholar 

  6. N.L. Max and E.D. Getzoff, IEEE Camp. Graphics Appl. 8 (1988) 42.

    Google Scholar 

  7. T. Wallace and P.A. Wintz, Fourier descriptors for extraction of shape information, in:Image Understanding and Information Extraction, eds. T.S. Huang and K.S. Fu, School of Electrical Engineering, Purdue University, Indiana, USA TR-EE 77-35 (1977).

    Google Scholar 

  8. F. Etsami and J.J. Uicker, Comp. Vision, Graphics Image Process. 29 (1985) 216.

    Google Scholar 

  9. D.L. Fritzsche,A systematic method for character recognition, Ohio State Univ. Res. Found., Columbus, Rep. 12224 ASTIA AD 268-360 (1961).

    Google Scholar 

  10. K. Gotoh and J.L. Finney, Powder Tech. 12 (1975) 125.

    Google Scholar 

  11. R.L. Cosgriff, Identification of shape, Ohio State Univ. Res. Found., Columbus, Rep. 820-11, ASTIA AD 254 792 (1960).

    Google Scholar 

  12. C.T. Zahn and R.Z. Roskies, IEEE Trans. Comp. C21 (1972) 269–271.

    Google Scholar 

  13. P. Dennery and A. Krzywicki, Mathematics for Physicists (Harper & Row, New York, 1967).

    Google Scholar 

  14. O.R. Mitchell, P. Soc. Photo. 442 (1983) 38.

    Google Scholar 

  15. T. Wallace and P.A. Wintz, Comp. Graphics Image Process. 13 (1980) 99.

    Google Scholar 

  16. B. Shridhar and A. Baldredin, Pattern Recognition 17 (1984) 515.

    Google Scholar 

  17. K.S. Park and N.S. Lee, Comp. Biomed. Res. 20 (1987) 125–140.

    Google Scholar 

  18. R.A. Crowther, The fast rotation function in the molecular replacement method, in:The Molecular Replacement Method: A Collection of Papers on the Use of Non-crystallographic Symmetry, ed. M.G. Rossman (Gordon & Breach, New York, 1972).

    Google Scholar 

  19. E.W. Hobson,Spherical & Ellipsoidal Harmonics (Cambridge University Press, 1931).

  20. J.P. Elliot and P.G. Dawber,Symmetry in Physics, Vol. l (Macmillan, London, 1979).

    Google Scholar 

  21. A.W. Joshi,Elements of Group Theory for Physicists (Wiley Eastern, New Delhi, 1973).

    Google Scholar 

  22. J.D. Davis and P. Rabinowitz,Methods of Numerical Integration (Academic Press, London, 1987).

    Google Scholar 

  23. R.A. Wiggins and S. Masanori, Bull. Seismolog. Soc. Am. 61 (1971) 357.

    Google Scholar 

  24. W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling,Numerical Recipes — The Art of Scientific Programming (Cambridge University Press, 1987).

  25. F.C. Bernstein, T.F. Koetzle, G.J.B. Williams, E.F. Meyer, M.D. Bryce, J.R. Rodgers, O. Kennard, T. Shikanouchi and M. Tasumi, J. Mal. Biol. 112 (1977) 535.

    Google Scholar 

  26. Dewar Research Group and J.P.P. Stewart, AMPAC 2.0, QCPE Bull. 6 (1986) 24 (QCPE No.: 506).

  27. M.L. Connolly, Molecular Surface Program, QCPE Bull. l (1981) 74 (QCPE No. 429).

    Google Scholar 

  28. F.M. Richards, Ann. Rev. Biophys. Bioeng. 6 (1977) 151.

    Google Scholar 

  29. E. Persoon and F. King-Sun, IEEE Trans. Syst., Man & Cybern. SMC 7 (3) (1977) 170.

    Google Scholar 

  30. C. Chatfield and A.J. Collins,Introduction to Multivariate Analysis (Chapman & Hall, London, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leicester, S., Finney, J. & Bywater, R. A quantitative representation of molecular surface shape. I: Theory and development of the method. J Math Chem 16, 315–341 (1994). https://doi.org/10.1007/BF01169216

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01169216

Keywords

Navigation