Skip to main content
Log in

Information theoretical analysis of the hydrogen atom

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

This is an analysis of the statistical nature of the time-independent Schrödinger equation through the use of the information entropy concept. We first study the Schrödinger equation in a general way and then by actually computing entropies of various states of the hydrogen atom for a re-examination of the problem. It is found that there exists a variational procedure involving maximizing entropy for obtaining all solutions once one solution is known. Based on certain observations of the particular single system, some general conclusions can be deduced. First of all, we can safely say that the Schrödinger equation, among many other interpretations, is but the consequence of a principle of minimum potential energy expectation with certain proper constraints imposed. In addition, the ensemble concept in statistical thermodynamics is also useful in understanding microscopic quantum systems and many quantum mechanical concepts such as energy quantization and wave nodal properties can be discussed in the light of information theory and statistics in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.E. Shannon, “A mathematical theory of communication”, Bell Syst. Tech. J. 27 (1948) 379–423,623–656.

    Google Scholar 

  2. N. Wiener,Cybernetics (Wiley, New York, 1948).

    Google Scholar 

  3. N. Wiener, “What is information theory?” IRE Trans. Inform. Theory IT-2 (1956) 48.

    Google Scholar 

  4. R. Ash,Information Theory (Interscience, New York, 1967).

    Google Scholar 

  5. E.T. Jaynes, Phys. Rev. 106 (1957) 620.

    Google Scholar 

  6. S. Kullback,Statistics and Information Theory (Wiley, New York, 1959).

    Google Scholar 

  7. I. Bialynicki-Birula and J. Mycielski, Commum. Math. Phys. 44 (1975) 129.

    Google Scholar 

  8. W. Beckner, Ann. Math. 102 (1975) 159.

    Google Scholar 

  9. S.R. Gadre, Phys. Rev. A30 (1984) 620.

    Google Scholar 

  10. S.R. Gadre, S.J. Chakravorty and R.D. Bendale, Phys. Rev. A32 (1985) 2602.

    Google Scholar 

  11. S.R. Gadre, R.D. Bendale and S.P. Gejji, Chem. Phys. Lett. 117 (1985) 138;

    Google Scholar 

  12. S.R. Gadre and R.D. Bendale, Curr. Sci. 54 (1985) 9970.

    Google Scholar 

  13. G. Maroulis, M. Sana and G. Leroy, Int. J. Quant. Chem. 19 (1981) 43.

    Google Scholar 

  14. S.B. Sears R. Parr and U. Dinur, Israel J. Chem. 19 (1980) 165–173.

    Google Scholar 

  15. B.R. Frieden, J. Mod. Opt. 35 (1988) 1297–1316.

    Google Scholar 

  16. B.R. Frieden, Am. J. Phys. 57 (1989) 1004.

    Google Scholar 

  17. S.R. Gadre and S.B. Sears, J. Chem. Phys. (a) 71 (1979) 4321; 75 (1981) 4626.

    Google Scholar 

  18. T. Koga and M. Morita, J. Chem. Phys. 79 (1983) 1933.

    Google Scholar 

  19. L. Arrachea, N. Canosa, A. Plastino, M. Portesi and R. Rossignoli,Condensed Matter Theories, Vol. 7, eds. A.N. Proto and J.L. Aliaga, (Plenum Press, New York, 1992) p. 63.

    Google Scholar 

  20. N. Canosa, R. Rossignoli and A. Plastino,Condensed Matter Theories, Vol. 7, eds. A.N. Proto and J. L. Aliaga (Plenum Press, New York, 1992) p. 69.

    Google Scholar 

  21. E. Schrödinger,Collected Papers on Wave Mechanics (Blackie, London, 1928; Chelsea, New York, 1982).

    Google Scholar 

  22. V.A. Johnson, Phys. Rev. 60 (1941) 373.

    Google Scholar 

  23. P.R. Auvil and L.M. Brown, Am. J. Phys. 46 (1978) 679.

    Google Scholar 

  24. S.R. Gadre and R.D. Bendale, Phys. Rev. A36 (1987) 1932.

    Google Scholar 

  25. I.N. Levine,Quantum Chemistry, 3rd Ed. (Allyn and Bacon, Boston, 1983) pp. 326–329, 354–365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, JC., Yang, YC., Jia, HW. et al. Information theoretical analysis of the hydrogen atom. J Math Chem 16, 125–136 (1994). https://doi.org/10.1007/BF01169201

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01169201

Keywords

Navigation