Skip to main content
Log in

Contraction algorithms for third-order reduced density matrices: Symmetric group approach

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this work, we present the mapping formulae for the contraction of the third-order reduced density matrices represented in the basis of the irreducible representations (IR) of the symmetric group S3 into the second-order ones which are represented in the basis of the IR of group S2. These algorithms, which can be useful in several fields, have been applied for the approximation of reduced density matrices within the spin-adapted reduced Hamiltonian theory. Some results obtained with this procedure are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Karwowski, W. Duch and C. Valdemoro, Phys. Rev. A33 (1986)2254.

    Google Scholar 

  2. L. Lain, A. Torre, J. Karwowski and C. Valdemoro, Phys. Rev. A38 (1988)2721.

    Google Scholar 

  3. J. Planelles, C. Valdemoro and J. Karwowski, Phys. Rev. A43 (1991)3392.

    Google Scholar 

  4. C. Valdemoro, L. Lain, F. Beitia, A. Ortiz and F. Castaño, Phys. Rev. A33 (1986)1525.

    Google Scholar 

  5. L. Lain, C. Valdemoro, A. Torre and M. Reguero, Phys. Rev. A35 (1987)3132.

    Google Scholar 

  6. M. Reguero and C. Valdemoro, in:Basic Aspects of Quantum Chemistry, ed. R. Carbó (Elsevier, Amsterdam, 1989).

    Google Scholar 

  7. L. Lain, A. Torre and C. Valdemoro, Phys. Rev. A37 (1988)2868.

    Google Scholar 

  8. D.L. Cooper, J. Gerratt and M. Raimondi, Chem. Rev. 91 (1991)929, and references therein.

    Google Scholar 

  9. J. Paldus and B. Jeziorski, Theor. Chim. Acta 73 (1988)81.

    Google Scholar 

  10. M. Moshinsky,Group Theory and the Many-Bondy Problem (Gordon and Breach, New York, 1968).

    Google Scholar 

  11. J. Paldus, in:Theoretical Chemistry: Advances and Perspectives, ed. H. Eyring and D.J. Henderson (Academic Press, New York, 1976).

    Google Scholar 

  12. J. Koutecky and A. Laforgue, Int. J. Quant. Chem. 11 (1977)505.

    Google Scholar 

  13. J. Hinze and J.T. Broad, in:Lecture Notes in Chemistry, Vol. 22, ed. J. Hinze (Springer, Berlin, 1981) p. 332.

    Google Scholar 

  14. M.A. Robb and U. Niazi, Comput. Phys. Rep. 1 (1984)127.

    Google Scholar 

  15. W. Duch and J. Karwowski, Comput. Phys. Rep. 2 (1985)95.

    Google Scholar 

  16. W. Kutzelnigg, J. Chem. Phys. 82 (1985)4166, and references therein.

    Google Scholar 

  17. C. Valdemoro, A. Torre and L. Lain, in:Structure, Interactions and Reactivity, ed. S. Fraga (Elsevier, Amsterdam, 1992).

    Google Scholar 

  18. C.E. Moore,Ionization Potentials and Ionization Limits Derived from the Analysis of Optical Spectra, National Bureau of Standards (US) Spec. Publ. No. 34 (US GPO, Washington, 1970).

    Google Scholar 

  19. S. Fraga, J. Karwowski and K.M.S. Saxena,Handbook of Atomic Data (Elsevier, Amsterdam, 1976).

    Google Scholar 

  20. E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14 (1974)428.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tone, A., Lain, L. & Millan, J. Contraction algorithms for third-order reduced density matrices: Symmetric group approach. J Math Chem 13, 177–189 (1993). https://doi.org/10.1007/BF01165563

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01165563

Keywords

Navigation