Skip to main content
Log in

Unitary group tensor operator algebras for many-electron systems. III. Matrix elements in U(n 1 +n 2) ⊃ U(n 1) × U(n 2) partitioned basis

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Exploiting our earlier results [J. Math. Chem. 4 (1990) 295–353 and 13 (1993) 273–316] on the unitary group U(n) Racah-Wigner algebra, specifically designed for quantum chemical calculations of molecular electronic structure, and the related tensor operator formalism that enabled us to introduce spin-free orbital equivalents of the second quantization-like creation and annihilation operators as well as higher rank symmetric, antisymmetric and adjoint tensors, we consider the problem of U(n) basis partitioning that is required for group-function type approaches to the many-electron problem. Using the U(n) ⊃ U(n 1) × U(n 2),n =n 1 +n 2 adapted basis, we evaluate all required matrix elements of U(n) generators and their products that arise in one- and two-body components of non-relativistic electronic Hamiltonians. The formalism employed naturally leads to a segmented form of these matrix elements, with many of the segments being identical to those of the standard unitary group approach. Relationship with similar approaches described earlier is briefly pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Moffitt, Proc. R. Soc. London A210 (1951) 224, 245.

    Google Scholar 

  2. G.G. Balint-Kurti and M. Karplus, in:Orbital Theories of Molecules and Solids, ed. N.H. March (Clarendon Press, Oxford, 1974) pp. 250–310; R. Polák, Chem. Phys. 60 (1981) 287.

    Google Scholar 

  3. R. McWeeny, Proc. R. Soc. London A253 (1959) 242.

    Google Scholar 

  4. W. von Niessen, J. Chem. Phys. 55 (1971) 1948.

    Google Scholar 

  5. R.E. Christoffersen and G.M. Maggiora, Chem. Phys. Lett. 3 (1969) 419; D. Spangler and R.E. Christoffersen, Int. J. Quant. Chem. 17 (1980) 1075.

    Google Scholar 

  6. F.O. Ellison, J. Am. Chem. Soc. 85 (1963) 3540; P.J. Kuntz, in: Theoretical Models of Chemical Bond, Part 2, The Concept of the Chemical Bond, ed. Z.B. Maksic (Springer, Berlin, 1990) pp. 321–376.

    Google Scholar 

  7. F.A. Matsen and D.J. Klein, J. Phys. Chem. 75 (1971) 1860.

    Google Scholar 

  8. P.E. S. Wormer and A. van der Avoird, J. Chem. Phys. 57 (1972) 2498.

    Google Scholar 

  9. P.E.S. Wormer, in:Electron Correlation: Proc. Daresbury Study Weekend, 17–18 November 1979, ed. M.F. Guest and S. Wilson (Science Research Council, Daresbury Laboratory, Daresbury, Warrington, U.K., 1980) pp. 49–59.

    Google Scholar 

  10. J. Paldus, J. Chem. Phys. 61 (1974) 5321; in: Theoretical Chemistry: Advances and Perspectives, Vol. 2, ed. H. Eyring and D. Henderson (Academic Press, New York, 1976) pp. 131–290.

    Google Scholar 

  11. I. Shavitt, Int. J. Quant. Chem. S11 (1977) 131; S12 (1978) 5.

    Google Scholar 

  12. The Unitary Group for the Evaluation of Electronic Energy Matrix Elements, Lecture Notes in Chemistry, Vol. 22, ed. J. Hinze (Springer, Berlin, 1981).

  13. R. Pauncz,Spin Eigenfunctions: Construction and Use (Plenum, New York, 1979) ch. 9.

    Google Scholar 

  14. M.A. Robb and U. Niazi, Comp. Phys. Rep. 1 (1984) 127.

    Google Scholar 

  15. S. Wilson,Electron Correlation in Molecules (Clarendon, Oxford, 1984) ch. 5.

    Google Scholar 

  16. F.A. Matsen and R. Pauncz,The Unitary Group in Quantum Chemistry (Elsevier, Amsterdam, 1986).

    Google Scholar 

  17. J. Paldus, in:Symmetries in Science, Vol. 2, ed. B. Gruber and R. Lenczewski (Plenum, New York, 1986) pp. 429–446.

    Google Scholar 

  18. J. Paldus, in:Mathematical Frontiers in Computational Chemical Physics, IMA Series, ed. D.G. Truhlar (Springer, Berlin, 1988) pp. 262–299; (b) I. Shavitt, ibid., pp. 300–349.

    Google Scholar 

  19. R. McWeeny,Methods of Molecular Quantum Mechanics, 2nd ed. (Academic, London and San Diego, 1989) ch. 10.

    Google Scholar 

  20. M.A. Robb and U. Niazi, Rep. Molecular Theory 1 (1990) 23.

    Google Scholar 

  21. J. Paldus, in:Methods in Computational Molecular Physics, Vol. 4, ed. S. Wilson and G.H.F. Diercksen (Plenum, New York, 1992) pp. 57–63 and references therein.

    Google Scholar 

  22. A.P. Jucys, I.B. Levinson and V.V. Vanagas,Mathematical Apparatus of the Theory of Angular Momentum (Inst. of Phys. and Math. of the Acad. of Sci. of the Lithuanian SSR, Mintis, Vilnius, 1960) in Russian (English transi.: Israel Program for Scientific Translations, Jerusalem, 1962 and Gordon and Breach, New York, 1964); A.P. Jucys and A.A. Bandzaitis, The Theory of Angular Momentum in Quantum Mechanics (Inst. of Phys. and Math. of the Acad. of Sci. of the Lithuanian SSR, Mintis, Vilnius, 1964) in Russian.

    Google Scholar 

  23. E. El Baz and B. Castel,Graphical Methods of Spin Algebras in Atomic, Nuclear and Particle Physics (Dekker, New York, 1972).

    Google Scholar 

  24. I. Lindgren and J. Morrison,Atomic Many-Body Theory (Springer, New York, 1982) ch. 3.

    Google Scholar 

  25. J. Paldus and M.J. Boyle, Phys. Rev. A22 (1980) 2299; M.J. Boyle and J. Paldus, ibid. A22 (1980)2316.

    Google Scholar 

  26. J. Paldus and M.J. Boyle, Phys. Scripta 21 (1980) 295.

    Google Scholar 

  27. M.D. Gould and J. Paldus, Int. J. Quant. Chem. 30 (1986) 327; (b) M. D. Gould, ibid. 30 (1986) 364.

    Google Scholar 

  28. H.S. Green, J. Math. Phys. 12 (1971) 2106; A.J. Bracken and H.S. Green, ibid. 12 (1971) 2099.

    Google Scholar 

  29. M.D. Gould, J. Math. Phys. 21 (1980) 444; 22 (1981) 15; 27 (1986) 1944.

    Google Scholar 

  30. M.D. Gould and G.S. Chandler, Int. J. Quant. Chem. 25 (1984) 1089; 26 (1984) 441 and references therein.

    Google Scholar 

  31. J. Paldus, M.-J. Gao and J.-Q. Chen, Phys. Rev. A35 (1987) 3197.

    Google Scholar 

  32. X. Li and J. Paldus, J. Math. Chem. 4 (1990) 295 (referred to as Part 1).

    Google Scholar 

  33. X. Li and J. Paldus, J. Math. Chem. 13 (1993) 273 (referred to as Part 11).

    Google Scholar 

  34. M.D. Gould, X. Li and J. Paldus, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Paldus, J. Unitary group tensor operator algebras for many-electron systems. III. Matrix elements in U(n 1 +n 2) ⊃ U(n 1) × U(n 2) partitioned basis. J Math Chem 14, 325–355 (1993). https://doi.org/10.1007/BF01164475

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01164475

Keywords

Navigation