Skip to main content
Log in

Lattice models for the collapse of branched polymers

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Randomly branched polymers in dilute solution in a good solvent can be modelled by lattice animals (i.e. connected clusters). Introducing attractive monomer—monomer interactions between nearest-neighbour sites causes the branched polymer to become more compact and a collapse transition, analogous to that in linear polymers, is expected to occur at low temperature. This model, and alternative lattice models for the collapse transition of branched polymers, will be described. In each of the models, the collapse is driven by some kind of near-neighbour fugacity, cycle fugacity or perimeter fugacity. In two and three dimensions and on several lattices, analytical results for the free energy and numerical results, using exact enumeration data, for the free energy and for the specific heat, will be presented with estimates of the cross-over exponentϕ and the collapse temperature Tc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Mazur and F.L. McCrackin, J. Chem. Phys. 49 (1968) 648.

    Google Scholar 

  2. R. Finsy, M. Janssens and A. Bellemans, J. Phys. A 8 (1975) L106.

    Google Scholar 

  3. H.J. Saleur, J. Stat. Phys. 45 (1986) 419.

    Google Scholar 

  4. H. Meirovitch and H.A. Lim, Phys. Rev. A 39 (1989) 4186.

    PubMed  Google Scholar 

  5. B. Derrida and H.J. Herrmann, J. Phys. (Paris) 44 (1983) 1365.

    Google Scholar 

  6. R. Dickman and W.C. Shieve, J. Phys. (Paris) 45 (1984) 1727.

    Google Scholar 

  7. R. Dickman and W.C. Shieve, J. Stat. Phys. 44 (1986) 465.

    Google Scholar 

  8. P.M. Lam, Phys. Rev. B 35 (1987) 6988.

    Google Scholar 

  9. P.M. Lam, Phys. Rev. B 38 (1988) 2813.

    Google Scholar 

  10. I.S. Chang and Y. Shapir, Phys. Rev. B38 (1988) 6736.

    Google Scholar 

  11. D.S. Gaunt and S. Flesia, Physica A168 (1990) 602.

    Google Scholar 

  12. D.S. Gaunt and S. Flesia, J. Phys. A 24 (1991) 3655.

    Google Scholar 

  13. S. Flesia and D.S. Gaunt, J. Phys. A 25 (1992) 2127.

    Google Scholar 

  14. S. Flesia, D.S. Gaunt, C.E. Soteros and S.G. Whittington, J. Phys. A 25 (1992) 3515.

    Google Scholar 

  15. S. Flesia, D.S. Gaunt, C.E. Soteros and S.G. Whittington, J. Phys. A 25 (1992) L1169.

    Google Scholar 

  16. T.C. Lubensky and J. Isaacson, J. Phys. Rev. A20 (1979) 2130.

    Google Scholar 

  17. M. Knezevic and J. Vannimenus, Phys. Rev. B35 (1987) 4988.

    Google Scholar 

  18. S.G. Whittington, G.M. Torrie and D.S. Gaunt, J. Phys. A 16 (1983) 1695.

    Google Scholar 

  19. N. Madras, C.E. Soteros, S.G. Whittington, J.L. Martin, M.F. Sykes, S. Flesia and D.S. Gaunt, J. Phys. A 23 (1990) 5327.

    Google Scholar 

  20. M.F. Sykes, J. Phys. A 19 (1986) 1007.

    Google Scholar 

  21. M.F. Sykes, J. Phys. A 19 (1986) 1027.

    Google Scholar 

  22. M.F. Sykes, J. Phys. A 19 (1986) 2425.

    Google Scholar 

  23. M.F. Sykes, J. Phys. A 19 (1986) 2431.

    Google Scholar 

  24. J.L. Martin, J. Stat. Phys. 58 (1990) 749.

    Google Scholar 

  25. M.F. Sykes, J. W. Essam and D.S. Gaunt, J. Math. Phys. 6 (1965) 283.

    Google Scholar 

  26. D.S. Gaunt, M.F. Sykes, G.M. Torrie and S.G. Whittington, J. Phys. A 15 (1982) 3209.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flesia, S. Lattice models for the collapse of branched polymers. J Math Chem 14, 7–20 (1993). https://doi.org/10.1007/BF01164451

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01164451

Keywords

Navigation