We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Experimental and theoretical investigation of singletoxygen bubbler generator for an oxygen-iodine laser

  • Published:
Journal of Soviet Laser Research Aims and scope

Conclusions

The following conclusions can be drawn from the calculated and experimental data concerning the operation of the SOG considered here:

  1. 1.

    The rate of chlorine production is limited by mass transport in the gas phase. A value\(\beta _g ^v \cong 1000/P\) (torr)·sec−1 was obtained for the gas mass output coefficient per unit volume of the reactor.

  2. 2.

    Satisfactory agreement was obtained between the experimental and calculated SOG exit parameters at a surface massoutput coefficient\(\beta _s \cong (30 - 50) \cdot \sqrt {b_s (mole/liter)} cm/\sec .\).

  3. 3.

    The elimination of HO 2 ions from the solution surface is insignificant in the regimes considered here. The escape of O2(1Δ) from the surface of the solution into the gas phase is close to 100%.

  4. 4.

    The use of a funnel did not decrease the fraction of O2(1Δ) at the generator output, but made it possible to stabilize the bubbling regime, and also increase greatly the degree of chlorine utilization, owing to the decrease of the gas-phase scale.

  5. 5.

    It was found that the O2(1Δ) yield decreases with the height of the working-solution layer, starting with h l ≅4–5 cm, a value corresponding to optimum SOG efficiency ξoutη.

  6. 6.

    At optimum height of the solution layer, the relative fraction of O2(1Δ) at the exit from a bubbler SOG is\(\eta _\Delta ^{out} \cong 85 - 60\%\) at\(\dot m_{Cl_2 } /S \cong 0.01 - 0.1\) mmol/cm2·sec respectively.

  7. 7.

    In our opinion, the bubbler SOG considered here can be used in subsonic cw COIL with\(\dot m_{Cl_2 } /S \leqslant 0.03\) mmol/cm2·sec and with\(\dot m_{Cl_2 } /S \cong 0.05 - 0.1\) mmol/cm2·sec in supersonic cw and pulsed COIL.

  8. 8.

    Taking the foregoing results into account, it can be concluded that in the investigated range of chlorine loading the parameter that decides the O2(1Δ) content is pτ. From the standpoint of comparing the bubbler type SOG considered here with rotor-film and jet types, the conclusions 1 and 3 attest to the similarity of the operating conditions of various generator types. With a suitable choice of bubbler SOG design that minimizes pτ it is therefore possible to expect it to operate at pressures not inferior to those reached in jet and film SOG; this is particularly important for the use of bubbler SOG in supersonic COIL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Planovskii, V. I. Ramm, and S. Z. Kagan, Processes and Apparatus for Chemical Technology [in Russian], Khimiya, Moscow (1968).

    Google Scholar 

  2. V. V. Kafarov, Principles of Mass Transfer [in Russian], Vysshaya Shkola, Moscow (1978).

    Google Scholar 

  3. N. V. Shinkarenko and V. B. Alekseevskii, Uspekhi Khimii,50, 406 (1981).

    Google Scholar 

  4. R. G. Derwent and B. A. Thrush, Trans. Faraday Soc.,67, 2036 (1971).

    Google Scholar 

  5. R. G. Aviles, D. F. Muller, and P. L. Houston, Appl. Phys. Lett.,37, 356 (1980).

    Google Scholar 

  6. D. J. Benard, W. E. McDermott, N. R. Pchelkin, and R. R. Bousek, ibid., 34(1), 40 (1979).

    Google Scholar 

  7. J. Bonnet, D. David, E. Georges, B. Leporcq, D. Pigache, and C. Verdier, ibid.,45, 1009 (1984).

    Google Scholar 

  8. K. Watanabe, S. Kaschiwabara, K. Sawai, S. Toshima, ane R. Fujimota, ibid.,54, 1228 (1983).

    Google Scholar 

  9. N. P. Vagin, A. F. Konoshenko, P. G. Kryukov, D. Kh. Nurligareev, V. S. Pazyuk, V. N. Tomashev, and N. N. Yuryshev, Kvantovaya Elektron. (Moscow),11, 1688 (1984).

    Google Scholar 

  10. M. V. Zagidullin, V. I. Igoshin, V. A. Katulin, and N. L. Kupriyanov, FIAN Preprint No. 211, Moscow (1982).

  11. G. N. Fisk and G. N. Hays, IEEE J. Quantum Electronics,17, 1823 (1981).

    Google Scholar 

  12. C. E. Wiswall, R. J. Richardson, and J. V. Reddy, ibid.,17, 225 (1981).

    Google Scholar 

  13. J. A. Blauer, S. A. Munjee, K. A. Truesdell, E. C. Curtis, and J. F. Sullivan, J. Appl. Phys.,62, 2508 (1957).

    Google Scholar 

  14. P. V. Avizonis, “Chemical oxygen-iodine laser review,” 7-th Symp. on Gas Flow and Chemical Lasers, Vienna, 22–26 August 1988.

  15. N. F. Balan, R. M. Gizatullin, M. V. Zagidullin, A. Yu. Kurov, V. D. Nikolaev, V. M. Pichkasov, and M. I. Svistun, Kvantovaya Elektron. (Moscow),16, 2197 (1988).

    Google Scholar 

  16. J. Bachar and S. Rosenwaks, Appl. Phys. Lett.,41, 16 (1981).

    Google Scholar 

  17. H. Yoshimoto, H. Yamakoshi, Y. Schibukawa, and T. Uchiama, J. Appl. Phys.,59, 3965 (1986).

    Google Scholar 

  18. S. Yoshida, H. Fujii, T. Sawano, M. Endo, and T. Fujioka, Appl. Phys. Lett.,51, 1490 (1987).

    Google Scholar 

  19. N. P. Vagin, P. G. Kryukov, V. S. Pazyuk, and N. N. Yuryshev, Kvantovaya Elektron. (Moscow),15, 1785 (1988).

    Google Scholar 

  20. N. F. Balan, R. M. Gizatullin, M. V. Zagidullin, A. Yu. Kurov, V. A. Katulin, V. D. Nikolaev, A. L. Petrov, V. M. Pichkasov, and M. I. Svistun, Kratk. Soobshch. Fiz. (FIAN) No. 4, 23 (1989).

    Google Scholar 

  21. O. Spalek, J. Kodymova and A. Hirsl, J. Appl. Phys.,62, 2208 (1987).

    Google Scholar 

  22. E. Georges, B. Leporco, and C. Verdier, 6-th GCL, Jerusalem, 8–12 September 1986.

  23. V. N. Azyazov and N. L. Kupriyanov, Trudy FIAN,194, 148 (1989).

    Google Scholar 

  24. C. E. Wiswall, S. L. Bragg, J. V. Reddy, and H. V. Lilenfeld, J. Appl. Phys.,58, 115 (1985).

    Google Scholar 

  25. N. P. Vagin, D. G. Karapetyan, A. F. Konoshenko, P. G. Kryukov, V. S. Pazyuk, V. N. Tomashev, and N. N. Yuryshev, Trudy FIAN,194, 114 (1989).

    Google Scholar 

  26. N. P. Vagin, D. G. Karapetyan, A. F. Konoshenko, P. G. Kryukov, V. S. Pazyuk, V. N. Tomashev, and N. N. Yuryshev, Kratk. Soohshch. Fiz. FIAN, No. 4, 6 (1989).

    Google Scholar 

  27. S. Yoshida, M. Endo, T. Savano, S. Amano, H. Fujii, and T. Fujioka, J. Appl Phys.,65, 870 (1989)

    Google Scholar 

  28. N. G. Basov, M. V. Zagidullin, V. I. Igoshin, V. A. Katulin, and N. L. Kupriyanov, Trudy FIAN,171, 30 (1986).

    Google Scholar 

  29. V. N. Azyazov and N. L. Kupriyanov, FIAN Preprint No. 69 (1988).

  30. V. M. Ramm, Absorption of Gases [in Russian], Khimiya, Moscow (1976).

    Google Scholar 

  31. M. E. Pozin, I. P. Mukhlepov, et al., Foam Method of Processing Gases and Liquids [in Russian], Goskhimizdat, Leningrad (1955).

    Google Scholar 

  32. S. N. Engibaryan, É. Ya. Tatat, I. P. Mukhlepov, et al., Zh. Prikl. Khimii,43, 1178 (1970).

    Google Scholar 

  33. M. M. Bashkirov and V. Ya. Khentov, ibid.49 2665 (1976).

    Google Scholar 

Download references

Authors

Additional information

Quantum Radiophysics Division, Lebedev Physics Institute. Translation of Preprint No. 145 (manuscript), Lebedev Physics Institute, Russian Academy of Sciences, Moscow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azyazov, V.N., Vagin, N.P., Kupriyanov, N.L. et al. Experimental and theoretical investigation of singletoxygen bubbler generator for an oxygen-iodine laser. J Russ Laser Res 14, 114–126 (1993). https://doi.org/10.1007/BF01131001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01131001

Keywords

Navigation