Skip to main content
Log in

Nonlinear conductivity and entropy in the two-body Boltzmann gas

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We find exact solutions of the two-particle Boltzmann equation for hard disks and hard spheres diffusing isothermally in an external field. The corresponding transport coefficient, one-particle current divided by field strength, decreases as the field increases. This nonlinear dependence of the current on the field and the corresponding nonlinear dependence of the distribution function on the current are compared to the predictions of “single-time” information theory. Our exact steady-state distribution function, from Boltzmann's equation, is quite different from the approximate information-theory analog. The approximate theory badly underestimates the nonlinear decrease of entropy with current. The exact two-particle solutions we find here should prove useful in testing and improving theories of steady-state and transient distribution functions far from equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Evans, W. G. Hoover, B. Failor, and B. Moran,Phys. Rev. A 28:1016 (1983).

    Google Scholar 

  2. D. J. Evans,Phys. Rev. A 23:1988 (1981).

    Google Scholar 

  3. H. J. M. Hanley and D. J. Evans,J. Chem. Phys. 76:3225 (1982).

    Google Scholar 

  4. D. J. Evans,Phys. Lett. A 91:457 (1982).

    Google Scholar 

  5. M. J. Gillan and M. Dixon,J. Phys. C: Solid State Phys. 16:689 (1983).

    Google Scholar 

  6. C. Massobrio and G. Ciccotti,Phys. Rev. A 30:3191 (1984).

    Google Scholar 

  7. W. G. Hoover, B. Moran, and J. Haile,J. Stat. Phys. 37:109 (1983).

    Google Scholar 

  8. Y. Rosenfeld,Phys. Rev. A 15:2545 (1977).

    Google Scholar 

  9. R. Grover, W. G. Hoover, and B. Moran,J. Chem. Phys. 83:1255 (1985).

    Google Scholar 

  10. B. J. Alder, W. G. Hoover, and T. E. Wainwright,Phys. Rev. Lett. 11:241 (1963).

    Google Scholar 

  11. A. J. C. Ladd and W. G. Hoover,J. Stat. Phys. 38:973 (1985).

    Google Scholar 

  12. W. G. Hoover, K. A. Winer, and A. J. C. Ladd,Int. J. Eng. Sci. 23:483 (1985).

    Google Scholar 

  13. E. T. Jaynes,Phys. Rev. 106:620 (1957).

    Google Scholar 

  14. E. T. Jaynes,Phys. Rev. 108:171 (1957).

    Google Scholar 

  15. E. T. Jaynes,Ann. Rev. Phys. Chem. 31:579 (1980).

    Google Scholar 

  16. D. N. Zubarev,Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974), Section 27.

    Google Scholar 

  17. D. J. Evans and W. G. Hoover,Ann. Rev. Fluid Mech. 18:243 (1986).

    Google Scholar 

  18. W. G. Hoover,Ann. Rev. Phys. Chem. 34:103 (1983).

    Google Scholar 

  19. W. G. Hoover and K. W. Kratky,J. Stat. Phys. (in press).

  20. F. Reif,Statistical and Thermal Physics (McGraw-Hill, New York, 1965).

    Google Scholar 

  21. D. J. Evans and G. P. Morriss,Mol. Phys. 54:629 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoover, W.G. Nonlinear conductivity and entropy in the two-body Boltzmann gas. J Stat Phys 42, 587–600 (1986). https://doi.org/10.1007/BF01127730

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01127730

Key words

Navigation