Skip to main content
Log in

Ultrabroadband single-pulse CARS of liquids using a spatially dispersive Stokes beam

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A double-channel spectrometer, which enables to acquire ultrabroadband single-pulse spectra of liquids by Coherent Anti-Stokes Raman Spectroscopy (CARS), is described. The method used to fulfill the phase-matching condition is based on the fact that the CARS efficiency in dispersive media is the largest when the interactive waves cross each other under frequency-determined angles. The dependence of the spatial separation between the pump and Stokes beam, in front of the crossing CARS lens, due to their frequency difference is analysed. It is shown that the different spectral components of an ultrabroadband Stokes source have phase-matched the CARS process when they are laterally shifted by a conjugated prism pair and focused into the sample. The method is tested in the spectral region 2800–3800 cm−1 of a non-resonant medium (CCl4) using an ultrabroadband dye laser (1000 cm−1 FWHM). The influence of the Stokes beam spatial dispersion on the width of CARS generation is demonstrated. By this method, 1060 cm−1 wide single-pulse spectra of the OH stretching vibration of liquid water are obtained for the first time. The ratio between the resonant and non-resonant part of the third-order susceptibility in water and methanol is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Taran: NATO/ASI Conf. on Applied Laser Spectroscopy, San Miniato (Sept. 1989)

  2. A. Tabyaoui, B. Lavorel, R. Saint-Loup, M. Rotger: J Raman Spectrosc.25, 255 (1994)

    Google Scholar 

  3. D.V. Murphy, M.B. Long, R.K. Chang, A.C. Eckbreth: Opt. Lett.4, 167 (1979)

    Google Scholar 

  4. V. Kornas, A. Roth, H.F. Döbele, G. Proß: Plasma Chem. Plasma Process.15, 71 (1995) V. Kornas, V. Schulz-von der Gathen, T. Bornemann, H.F. Döbele, G. Proß: Plasma Chem. Plasma Process.11, 171 (1991)

    Google Scholar 

  5. W.B. Roh, P.W. Schreiber, J.P.E. Taran: Appl. Phys. Lett.29, 174 (1976)

    Google Scholar 

  6. R. Bombach, T. Gerber, B. Hemmerling, W. Hubschmid: Appl. Phys. B51, 59 (1990)

    Google Scholar 

  7. F.M. Porter, D.A. Greenhalgh, P.J. Stepford, D.R. Williams, C.A. Baker: Appl. Phys. B51, 31 (1990)

    Google Scholar 

  8. K. Akihama, T. Asai: Appl. Opt.29, 3143 (1990)

    Google Scholar 

  9. M. Péalat, M. Lefebvre: Appl. Phys. B53, 23 (1991)

    Google Scholar 

  10. K.A. Marko, L. Rimai: Opt. Lett.4, 211 (1979) D. Klick, K.A. Marko, L. Rimai: Appl. Opt.20, 1178 (1981)

    Google Scholar 

  11. Th. Bouché, Th. Treier, B. Lange, J. Wolfrum, E.U. Franck, W. Schilling: Appl. Phys. B50, 527 (1990)

    Google Scholar 

  12. T. Dreier, G. Schiff: Appl. Phys. B55, 388 (1992)

    Google Scholar 

  13. M.A. Yaratich: Mol. Phys.38, 625 (1979)

    Google Scholar 

  14. A.C. Eckbreth, T.J. Anderson: Appl. Opt.24, 2731 (1985) A.C. Eckbreth, T.J. Anderson: Opt. Lett.11, 496 (1986)

    Google Scholar 

  15. S. Kröl, P.-E. Bengtsson, M. Aldén, D. Nilsson: Appl. Phys. B51, 25 (1990)

    Google Scholar 

  16. F. Grisch, M. Péalat, P. Bouchardy, J.P. Taran, I. Bar, D. Heflinger, S. Rosenwaks: Appl. Phys. Lett.59, 3516 (1991)

    Google Scholar 

  17. D.S. Moore, S.C. Schmidt, M.S. Shaw: J. Chem. Phys.101, 3488 (1994) D.S. Moore, S.C. Schmidt, J.W. Shaner: Phys. Rev. Lett.50, 1819 (1983)

    Google Scholar 

  18. D.E. Hare, D.D. Dlott: Appl. Phys. Lett.64, 715 (1994) D.E. Hare, J. Franken, D.D. Dlott: J. Appl. Phys.77, 5950 (1995)

    Google Scholar 

  19. P. Kukk, A. Lohmus, J. Korppi-Tommola: Appl. Spectrosc.44, 1381 (1990)

    Google Scholar 

  20. S.A. Akhmanov, A.A. Ivanov, N.I. Koroteev, S.F. Mironov, A.I. Fishman: J. Mol. Liquids53, 111 (1992)

    Google Scholar 

  21. A.I. Fishman, S.F. Mironov: J. Raman Spectrosc.25, 267 (1994)

    Google Scholar 

  22. A. Weippert, W. Kiefer: J. Raman Spectrosc.23, 713 (1992)

    Google Scholar 

  23. T. Bischof, W. Kiefer: J. Raman Spectrosc.25, 565 (1994)

    Google Scholar 

  24. I. Itzkan, D.A. Leonard: Appl. Phys. Lett.26, 106 (1975)

    Google Scholar 

  25. J.-L. Oudar, R.W. Smith, Y.R. Shen: Appl. Phys. Lett.34, 758 (1979)

    Google Scholar 

  26. W. Li, H.-G. Purucker, A. Laubereau: Opt. Commun.94, 300 (1992)

    Google Scholar 

  27. N.I. Koroteev, M. Endemann, R.L. Byer: Phys. Rev. Lett.43, 398 (1979)

    Google Scholar 

  28. A.F. Bunkin, D.V. Vlasov, A.S. Galumian, K.O. Surskii: Opt. Spectrosk.58, 481 (1985)

    Google Scholar 

  29. A.F. Bunkin, A.S. Galumian, H.A. Zumanov, D.V. Maltzev, K.O. Surskii: Opt. Spectrosk.62, 1249 (1987)

    Google Scholar 

  30. A.F. Bunkin, A.S. Galumian, H.A. Zumanov, D.V. Maltzev, K.O. Surskii: Opt. Spectrosk.60, 960 (1986)

    Google Scholar 

  31. A. Lau, W. Werncke, J. Klein, M. Pfeiffer: Opt. Commun.21, 399 (1977)

    Google Scholar 

  32. M. Pfeiffer, A. Lau, W. Werncke: J. Raman Spectrosc.21, 815 (1990)

    Google Scholar 

  33. B.N. Toleutaev, T. Tahara, H. Hamaguchi: Appl. Phys. B59, 369 (1994)

    Google Scholar 

  34. V.H. Astinov, G.M. Georgiev: General Conf. of the Balkan Physical Union BPU-2, Izmir, Turkey (Sept. 1994)

  35. V.H. Astinov, G.M. Georgiev: Spectrosc. Lett.29, N°1 (1996) (in press)

  36. V.H. Astinov: Opt. Commun.118, 297 (1995)

    Google Scholar 

  37. S.A. Akhmanov, N.I. Koroteev:Methods of Nonlinear Optics in Light Scattering Spectroscopy (Nauka, Moscow 1981)

    Google Scholar 

  38. B.P. Nickolskii (ed.):Handbook of Chemistry, Vol. 1 (Chemistry, Leningrad 1971)

    Google Scholar 

  39. M.B. Danailov, I.P. Christov: Appl. Phys. B51, 300 (1990)

    Google Scholar 

  40. Optisches Glas, Catalog (Spezial-glas GmbH, Mainz 1985)

  41. Optics Guide 5 (Melles Griot 1994) Chap. 3, p. 8

  42. G. Laufer, R.B. Miles: Opt. Commun.28, 250 (1979)

    Google Scholar 

  43. M. Stoev, J. Maria, V. Astinov, Zh. Nickolov, G. Georgiev: J. Mol. Struct.293, 231 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astinov, V.H., Georgiev, G.M. Ultrabroadband single-pulse CARS of liquids using a spatially dispersive Stokes beam. Appl. Phys. B 63, 62–68 (1996). https://doi.org/10.1007/BF01112840

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01112840

PACS

Navigation