Skip to main content
Log in

Crystal structure refinement of hendricksite, A Zn- and Mn-rich trioctahedral potassium mica: A contribution to the crystal chemistry of zinc-bearing minerals

Affinement de la structure cristalline de la hendricksite, mica trioctaédrique potassique riche en Zn et Mn; une contribution à la connaissance cristallochimique des minéraux zincifères

  • Published:
Tschermaks mineralogische und petrographische Mitteilungen Aims and scope Submit manuscript

Summary

The crystal structure of hendricksite, a trioctahedral mica of biotite type, characterized by high Zn2+ and Mn2+ contents has been refined by least square methods. The structural formula is: (K0.89Na0.10Ba0.04)(Mg1.57Zn0.54Mn 2+0.40 Fe 2+0.25 Al0.07Ti0.07Cr0.01)(Si2.92Al1.08)O10 (OH)2. The space group isC2/m and the cell parameters are:a=5.340(2) Å,b=9.524(2) Å,c=10.235(3) Å, β=100.07(2)o, the cell volume isV=497.98 Å3. The final unweightedR=0.072. Average cation-anion distances in polyhedra are: T−O=1.659 Å, M(1)−O=2.093 Å, M(2)−O=2.088 Å, A−Olong=3.316 Å and A−Oshort=3.004 Å; A is the alkaline cation. The rotation angle of tetrahedra is α=6.7°. The analysis of electron densities, of the dimensions and distorsions of polyhedra shows that Zn2+ is exclusively in octahedral sites; there is no order between six-fold coordinated cations. A comparison between the structural features of hendricksite and those of the two main end-members of biotites, phlogopite and annite, is presented.

The effect of the strong covalence of Zn−O bonds is particularly visible on the dimensions and orientations of the thermal ellipsoids of octahedral sites M(1) and M(2) which contain zinc. In all the published structures of trioctahedral micas, the ellipsoids of cationic sites are uniaxial positive, elongated parallel toc *. In hendricksite, this is observed only for the two zinc-free sites (T and A; in the octahedra M(1) and M(2), which contain zinc, the ellipsoids are approximately uniaxial negative, flattened parallel toa, which is a unique situation.

Zinc which habitually favours the tetrahedral coordinations with oxygen, enters the octahedra only, i.e. the chemically anisotropic sites, in hendricksite. The strong polarizability of Zn2+ is proposed to explain this behaviour.

An examination of the behaviour of Zn2+ in other compounds shows that this situation is general, zinc favours chemically anisotropic sites and specially those adjacent to OH or H2O.

Résumé

On a affiné par moindres carrés la structure de la hendricksite, mica trioctaédrique de type biotite, caractérisé par une teneur élevée en Zn2+ et Mn2+. La formule structurale de ce mica est: (K0m89Na0,10Ba0,04)(Mg1,57Zn0,54Mn 2+0,40 Fe 2+0,25 Al0,07Ti0,07Cr0,01)(Si2,92Al1,08)O10(OH)2. Le groupe spatial estC2/m et les paramètres de la maille:a=5,340(2) Å,b=9,254(2) Å,c=10,235(3) Å, β=100,07(2)°; le volume de la maille estV=497,98 Å3. Le résidu final non-pondéré estR=0,072. Les distances cation-anion moyennes dans les polyèdres sont les suivantes: T−O=1,659 Å, M(1)−O=2,093 Å, M(2)−O=2,088 Å, A−Olong=3,316 Å et A−Ocourt=3,004 Å où A désigne le cation alcalin. L'angle de rotation tétraédrique, α=6,7°, est très semblable à celui de la phlogopite. L'analyse des densités électroniques, des dimensions et distorsions des polyèdres montre que Zn2+ est exclusivement en coordinance octaédrique et qu'il n'y a pas d'ordre entre les cations hexacoordonnés. On présente une comparaison des caractères structuraux de la hendricksite avec ceux des deux principaux pôles des biotites, la phlogopite et l'annite.

L'effet de la forte covalence de la liaison Zn−O est particulièrement visible sur les dimensions et orientations des ellipsoides d'agitation thermique des deux sites octaédriques, sites zincifères. Dans toutes les structures de micas trioctaédriques publiées, les ellipsoides des sites cationiques sont uniaxes positifs, allongés parallèlement àc *, ce qui s' observe effectivement dans les deux sites non-zincifères (T et A) de la hendricksite, par contre, dans les octaèdres M(1) et M(2), qui contiennent le zinc, les ellipsoides sont approximativement uniaxes négatifs, applatis parallèlement àa, ce qui est une situation unique.

Le zinc, qui se fixe généralement en sites tétraédriques dans les structures de type oxyde, occupe les sites octaédriques, c'est-à-dire les sites chimiquement anisotropes dans la hendricksite. La forte polarisabilité de Zn2+ est proposée pour expliquer ce comportement.

Un examen du comportement de Zn2+ dans d'autres phases montre que cette situation est tout à fait générale, le zinc privilégiant les sites chimiquement anisotropes et en particulier ceux adjacents à OH où H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allmann, R., 1968: Verfeinerung der Struktur des Zinkhydroxydchlorids II, Zn5(OH)8Cl2·1H2O. Z. Krist.126, 417–426.

    Google Scholar 

  • Badalow, S. T., 1958: Pyrochroit, zinkhaltiger Serpentin und Allophan aus der Lagerstätte Almalyk (Usbekistan). Spaiski Wsesojusn. miner. Obsch87, 698.

    Google Scholar 

  • Busing, W. R., Martin, K. O., Levy, H. A., 1962: ORFLS Fortran crystallographic least-squares program. U.S. Oak Ridge Nat. Lab. ORNL-TM-305.

  • Cruickshank, D. W. J., 1965: Notes for authors: anisotropic parameters. Acta Cryst.19, 153.

    Google Scholar 

  • Donnay, G., Donnay, J. D. H., Takeda, H., 1964: Trioctahedral one-layer micas-II. Prediction of the structure from composition and cell-dimensions. Acta Cryst.17, 1374–1381.

    Google Scholar 

  • Fransolet, A.-M., Bourguignon, P., 1975: Donnés nouvelles sur la fraipontite de Moresnet (Belgique). Bull. Soc. franç. Min. Crist.98, 235–244.

    Google Scholar 

  • Frondel, C., Ito, J., 1966: Hendricksite, a new species of mica. Amer. Min.51, 1107–1123.

    Google Scholar 

  • Ghose, S., 1964: The crystal structure of hydrozincite, Zn5(OH)6(CO3)2. Acta Cryst.17, 1051–1057.

    Google Scholar 

  • —,Leo, S. R., Wan, C., 1974: Structural chemistry of copper and zinc minerals. Part I. Veszelyite, (Cu, Zn)2 ZnPO4(OH)3·2H2O: a novel type of sheet structure and crystal chemistry of copper-zinc substitution. Amer. Min.59, 573–581.

    Google Scholar 

  • Hawthorne, F. C., 1976: A refinement of the crystal structure of adamite. Canad. Min.14, 143–148.

    Google Scholar 

  • Hazen, R. M., Burnham, C. W., 1973: The crystal structure of one-layer phlogopite and annite. Amer. Min.58, 889–900.

    Google Scholar 

  • —,Wones, D. R., 1972: The effect of cation substitutions on the physical properties of trioctahedral micas. Amer. Min.57, 103–129.

    Google Scholar 

  • Hill, R. J., 1976: The crystal structure and infrared properties of adamite. Amer. Min.61, 979–986.

    Google Scholar 

  • —, 1977: The crystal structure of phosphophyllite. Amer. Min.62, 812–817.

    Google Scholar 

  • —,Jones, J. B., 1976: The crystal structure of hopeite. Amer. Min.61: 987–995.

    Google Scholar 

  • Kumbasar, I., Finney, J. J., 1968: The crystal structure of parahopeite. Min. Mag.36, 621–624.

    Google Scholar 

  • Liebau, F., 1965: Zur Kristallstruktur des Hopeits, Zn3 (PO4)2·4H2O. Acta Cryst.18, 352–354.

    Google Scholar 

  • Locchi, S., Burki, H., Nowacki, W., 1961: Zur Kristallstruktur der β-Form des Zinkhydroxid-(2, 4) Dinitrophenolates. Chimia15, 561–564.

    Google Scholar 

  • McCauley, J. W., 1968: Crystal structures of the micas KMg3AlSi3O10F2 and BaLiMg2AlSi3 O10F2. Ph.D. Thesis, Pennsylvania State University.

  • —,Newnham, R. E., Gibbs, G. V., 1973: Crystal structure analysis of synthetic fluorophlogopite. Amer. Min.58, 249–254.

    Google Scholar 

  • Moëlo, Y., 1982: Contribution à l'étude des conditions naturelles de formation des sulfures complexes d'antimoine et de plomb (sulfosels de Pb/Sb). Signification métallogénique. Thèse d'Etat, Université Paris VI.

  • Nowacki, W., Silverman, J. N., 1961: Die Kristallstruktur von Zinkhydroxychlorid II, Zn5(OH)8Cl2·1H2O. Z. Krist.115, 21–51.

    Google Scholar 

  • Pabst, A., 1955: Redescription of the single layer structure of the micas. Amer. Min.40, 967–974.

    Google Scholar 

  • Radoslovich, E. W., Norrish, K., 1962: The cell dimensions and symmetry of layer lattice silicates. I. Some structural considerations. Amer. Min.47, 599–616.

    Google Scholar 

  • Robert, J.-L., 1981: Études cristallochimiques sur les micas et les amphiboles. Applications pétrographiques et géochimiques. Thèse d'Etat, Université Paris XI.

  • Robert, J.-L., Chapuis, G., 1982: Crystal chemistry of Ti-rich micas: presence of MgIV and petrological consequences. 13th I.M.A. meeting, Varna, Bulgaria.

  • —,Maury, R. C., 1979: Natural occurrence of a (Fe,Mn,Mg) tetrasilicic potassium mica. Contr. Min. Petrol.68, 117–123.

    Google Scholar 

  • Ross, C. S., 1946: Sauconite, a clay mineral of the montmorillonite group. Amer. Min.31, 411.

    Google Scholar 

  • Schmidt, P. C., Weiss, A., Das, T. P., 1979: Effect of crystal fields and self-consistency on dipole and quadrupole polarizabilities of closed-shell ions. Phys. Rev. B19, 5525–5534.

    Google Scholar 

  • Seifert, F., Schreyer, W., 1965: Synthesis of a new mica KMg2.5(Si4O10)(OH)2. Amer. Min.50, 1114–1118.

    Google Scholar 

  • ——, 1971: Synthesis and stability of micas in the system K2O-MgO-SiO2-H2O and their relations to phlogopite. Contr. Min. Petrol.30, 196–215.

    Google Scholar 

  • Shannon, R. D., Prewitt, C. T., 1969: Effective ionic radii in oxides and fluorides. Acta Cryst. B25, 925–946.

    Google Scholar 

  • ——, 1970: Revised values of effective ionic radii. Acta Cryst. B26, 1046–1048.

    Google Scholar 

  • Tateyama, H., Shimoda, S., Sudo, T., 1974: The crystal structure of synthetic MgIV mica. Z. Krist.139, 196–206.

    Google Scholar 

  • Toraya, H., 1981: Distorsions of octahedra and octahedral sheets in 1M micas and the relation to their stability. Z. Krist.157, 173–190.

    Google Scholar 

  • —,Iwai, S., Marumo F., Daimon, M., Kondo, R., 1976: The crystal structure of tetrasilicic potassium fluor mica, KMg2.5Si4O10F2. Z. Krist.144, 42–52.

    Google Scholar 

  • ———,Hirao, M., 1977: The crystal structure of taeniolite, KLiMg2Si4O10F2. Z. Krist.146, 73–83.

    Google Scholar 

  • ————, 1978: The crystal structures of germanate micas, KMg2.5Ge4O10F2 and KLiMg2Ge4O10F2. Z. Krist.148, 65–81.

    Google Scholar 

  • Wadsley, A. D., 1955: The crystal structure of chalcophanite, ZnMn3O7·3H2O. Acta Cryst.8, 165–172.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robert, J.L., Gaspérin, M. Crystal structure refinement of hendricksite, A Zn- and Mn-rich trioctahedral potassium mica: A contribution to the crystal chemistry of zinc-bearing minerals. TMPM Tschermaks Petr. Mitt. 34, 1–14 (1985). https://doi.org/10.1007/BF01082453

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01082453

Keywords

Navigation