Skip to main content
Log in

Finding leading modes of a viscous free surface flow: An asymmetric generalized eigenproblem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Stability of steady, two-dimensional, slide coating flow of Newtonian liquid to small, two-dimensional disturbances is analyzed by means of Galerkin's method and finite element basis functions. The resulting sequence of computational problems consists of large, sparse, asymmetric generalized eigenproblemsJx=λ Mx in whichJ andM depend on system parameters andM is singular. These are solved for the leading modes—eigenvalues of algebraically largest real part, and their eigenvectors—by a flexible method assembled from the iterative Arnoldi algorithm with Schur-Wielandt deflation developed by Saad for the asymmetric eigenproblem; initialization that takes advantage of continuation and can incorporate rational acceleration; complex or real shift of eigenvalue, as appropriate; and—a key ingredient-approximately exponential preconditioning by rational transformation suitable to the singular behavior. The results include leading modes of complicated structure, examples of mode overtaking, turning points beyond which the steady flows do not exist, and Hopf points that mark onset of deleterious, spontaneous oscillations of the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, J. P. (1978). An efficient algorithm for the determination of certain bifurcation points,J. Comput. Appl. Math. 4, 19–27.

    Google Scholar 

  • Arnoldi, W. E. (1951). The principle of minimized iteration in the solution of the matrix eigenvalue problem,Q. Appl. Math. 9, 17–29.

    Google Scholar 

  • Bathe, K.-J. (1982).Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Bauer, F. L. (1957). Das Verfahren der Treppeniteration und verwandte Verfahren zur Losung algebraischer Eigenwertprobleme,Z. angew. Math. Phys. 8, 214–235.

    Google Scholar 

  • Bixler, N. E. (1982). Stability of coating flow, Ph.D. thesis, University of Minnesota, Minneapolis.

    Google Scholar 

  • Christodoulou, K. N., and Scriven, L. E. (1989a). The fluid mechanics of slide coating,J Fluid Mech., in press.

  • Christodoulou, K. N., and Scriven, L. E. (1989b). Discretization of free surface flows and other free boundary problems,J. Comput. Phys., to be published.

  • Christodoulou, K. N., and Scriven, L. E. (1989c). Operability limits of flow systemsx with free boundaries by solving nonlinear eigenvalue problems,Int. J. Num. Meth. Fluids, to be published.

  • Christodoulou, K. N., and Scriven, L. E. (1989d). Stability of two-dimensional viscous free surface flows to small three-dimensional disturbances, in preparation.

  • Coyle, D. J. (1984). The fluid mechanics of roll coating: Steady flows, stability, and rheology, Ph.D. thesis, University of Minnesota, Minneapolis.

    Google Scholar 

  • Daniel, G. W., Gragg, W. B., Kauffmann, L., and Stewart, G. W. (1976). Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization,Math. Comput. 30, 772–795.

    Google Scholar 

  • Eriksson, L. E., and Rizzi, A. (1985). Computer-aided analysis of the convergence to steady state of discrete approximations to the Euler equations,J. Comput. Phys. 57, 90–128.

    Google Scholar 

  • Franklin, J. N. (1968).Matrix theory, Prentice-Hall, Engelwood Cliffs, New Jersey.

    Google Scholar 

  • Goldhirsch, I., Orszag, S. A., and Maulik, B. K. (1987). An efficient method for computing leading eigenvalues of large asymmetric matrices,J. Sci. Comput. 2, 33–58.

    Google Scholar 

  • Golub, G. H., and Van Loan, C. F. (1983).Matrix Computations, Johns Hopkins University Press, Baltimore, Maryland.

    Google Scholar 

  • Higgins, B. G. (1980). Capillary hydrodynamics and coating beads, Ph.D. thesis, University of Minnesota, Minneapolis.

    Google Scholar 

  • Hood, P. (1976). Frontal solution program for unsymmetric matrices,Int. J. Num. Meth. Eng. 10, 379–399.

    Google Scholar 

  • Hood, P. (1977). Correction,Int. J. Num. Meth. Eng. 11, 1055.

    Google Scholar 

  • Jennings, A., and Stewart, W. (1980). Simultaneous iteration for partial eigensolution of real matrices,J. Math. Inst. Appl. 15, 351–361.

    Google Scholar 

  • Jepson, A. D. (1981). Numerical Hopf bifurcation, thesis, Part II, California Institute of Technology, Pasadena.

    Google Scholar 

  • Katagiri, Y., and Scriven, L. E. (1989). Analysis of transient response of a coating operation, in preparation.

  • Keller, H. B. (1977). Numerical solution of bifurcation and nonlinear eigenvalue problems. In Rabinowitz, P. H. (ed.),Applications of Bifurcation Theory, Dekker, New York, pp. 45–52.

    Google Scholar 

  • Kheshgi, H. S., and Scriven, L. E. (1982). Penalty finite element analysis of time-dependent two-dimensional film flows, in Kawai, T. (ed.),Finite Element Flow Analysis, University of Tokyo Press, Tokyo, pp. 113–120.

    Google Scholar 

  • Lamb, H. (1945).Hydrodynamics, 6th ed., Dover Publications, New York.

    Google Scholar 

  • Lanczos, C. (1950). An iteration method for the solution of the eigenvalue problem of linear differential and integral operator,J. Res. Natl. Bur. Stand. 45, 255–282.

    Google Scholar 

  • Parlett, B. (1980).The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Parlett, B., and Saad, Y. (1985). Complex shift and invert strategies for real matrices, Technical Report No. YALEU/DCS-RR-424, Yale University, Computer Science Department, New Haven, Connecticut.

    Google Scholar 

  • Parlett, B. N., Taylor, D. T., and Liu, Z. S. (1985). A look-ahead Lanczos algorithm for unsymmetric matrices,Math. Comput. 44, 105–124.

    Google Scholar 

  • Petzold, L., and Loetstedt, P. (1986). Numerical solultion of nonlinear differential equations with algebraic constraints II: Practical implications.SIAM J. Sci. Stat. Comput. 7, 720–733.

    Google Scholar 

  • Pritchard, W. G. (1986). Instability and chaotic behaviour in a free-surface flow,J. Fluid Mech. 165, 1–60.

    Google Scholar 

  • Reusch, M. F., Ratzan, L., Pomphrey, N., and Park, W. (1988). Diagonal Padé approximations for initial value problems,SIAM J. Sci. Stat. Comput. 9, 829–838.

    Google Scholar 

  • Ruschak, K. J. (1980). A method for incorporating free boundaries with surface tension in finite element fluid flow simulator,Int. J. Num. Meth. Eng. 15, 639–1648.

    Google Scholar 

  • Ruschak, K. J. (1983). A three-dimensional linear stability analysis for two-dimensional free boundary flows by the finite element method,Comput. Fluids 11, 391–401.

    Google Scholar 

  • Saad, Y. (1980). Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices,Lin. Alg. Appl. 34, 269–295.

    Google Scholar 

  • Saad, Y. (1982). Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems, Technical Report No. 255, Department of Computer Science, Yale University, New Haven, Connecticut.

    Google Scholar 

  • Saad, Y. (1989). Numerical solution of large nonsymmetric eigenvalue problems, in Proceedings of the Workshop on Practical Iterative Methods for Large Scale Computations. University of Minnesota Supercomputer Institute, Minneapolis, October 23–25, 1988. Elsevier Science Publishers B.V., Amsterdam.

    Google Scholar 

  • Saff, E. B., Schoenhage, A., and Varge, R. S. (1976). Geometric convergence toe −z by rational functions with real poles,Numer. Math. 25, 307–322.

    Google Scholar 

  • Siscovec, R. F., Dembart, B., Epton, M. A., Erisman, A. M., Manke, J. W., and Yip, E. L. (1979). Solvability of large scale descriptor systems, Report, DOE Contract No. ET-78-C-01-2876, Boeing Computer Services Company, Seattle, Washington.

    Google Scholar 

  • Stewart, G. W. (1973).Introduction to Matrix Computations, Academic Press, New York.

    Google Scholar 

  • Stewart, G. W. (1976). Simultaneous iteration for computing invariant subspaces of nonHermitian matrices,Numer. Math. 25, 123–136.

    Google Scholar 

  • Stewart, G. W. (1978). SRRIT-A Fortran subroutine to calculate the dominant invariant subspaces of a real matrix, Technical Report TR-514, University of Maryland, College Park.

    Google Scholar 

  • Storer, R. G. (1986). Numerical studies of toroidal resistive magnetohydrodynamic instabilities,J. Comput. Phys. 66, 294–323.

    Google Scholar 

  • Strang, G., and Fix, G. (1973).An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Wilkinson, J. H. (1965).The Algebraic Eigenvalue Problem, Clarendon Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christodoulou, K.N., Scriven, L.E. Finding leading modes of a viscous free surface flow: An asymmetric generalized eigenproblem. J Sci Comput 3, 355–406 (1988). https://doi.org/10.1007/BF01065178

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01065178

Key words

Navigation