Skip to main content
Log in

Spectral element multigrid. II. Theoretical justification

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We analyze here a multigrid algorithm used for solving iteratively the algebraic system resulting from the approximation of a second-order problem by spectral or spectral element methods. The analysis, performed here in the one-dimensional case, justifies the good smoothing properties of the Jacobi preconditioner that has been presented in Part I of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bank, R. E., and Douglas, C. C. (1985). Sharp estimates for multigrid rates of convergence with general smoothing and acceleration,SIAM J. on Numerical Analysis 22(4), 617, 633.

    Google Scholar 

  • Braess, D., and Verfürth, R. (1988). A note on multigrid methods for nonconforming finite element methods, Stochastische Mathematische Modelle, number 453, preprint Universität Heidelberg.

  • Davis, P. J., and Rabinowitz, P. (1985).Methods of Numerical Integration, Academic Press, New York.

    Google Scholar 

  • Door, M. R. (1984). The approximation theory for thep-version of the finite element method,SINUM 18(3), 1180, 1207.

    Google Scholar 

  • Fischer, P., Ronquist, E. M., Dewey, D., and Patera, A. T. (1988). Spectral element methods, algorithm and architecture. InProceedings of the First International Conference on Domain Decomposition Methods for P.D.E., Paris, Glowinski, R., Golub, G., Meurant, G., and Periaux, J. (eds.), SIAM, Philadelphia.

    Google Scholar 

  • Funaro, D. (1986). A multidomain spectral approximation of elliptic equations,Numer. Math. PDEs 2, 187–205.

    Google Scholar 

  • Funaro, D., Quarteroni, A., and Zanolli, P. (1988). An iterative procedure with interface relaxation for domain decomposition methods,SIAM J. on Numerical Analysis 25(6), 1213, 1236.

    Google Scholar 

  • Gottlieb, D., Hussaini, M. Y., and Orszag, S. A. (1984). Introduction, theory and applications of spectral methods, inSpectral Methods for Partial Differential Equations, Voigt, R. G., Gottlieb, D., and Hussaini, M. Y. (eds.), SIAM, Philadelphia.

    Google Scholar 

  • Heinrichs, W. (1988). Improved condition number for spectral methods, to appear inMath. Comput.

  • Maday, Y., and Patera, A. T. (1989). Spectral element methods for the incompressible Navier-Stokes equations, inState of the Art Surveys in Computational Mechanics, Noor, A. K. (ed.), ASME, New York.

    Google Scholar 

  • Maday, Y., Patera, A. T., and Ronquist, E. M. (1988). A well posed optimal spectral element approximation for the Stokes problem. lcase report No. 87-48, to appear inSIAM J. on Numerical Analysis.

  • Maday, Y., Patera, A. T., and Ronquist, E. M. (1989). A spectral element approximation for the two-dimensional Stokes problem. In preparation.

  • Maitre, J. F., and Musy, F. (1984). Multigrid methods: Convergence theory in a variational framework,SIAM J. on Numerical Analysis 21(4), 657–671.

    Google Scholar 

  • Patera, A. T. (1984). A spéctral element method for fluid dynamics: Laminar flow in a channel expansion,J. Comput. Phys. 54, 468–88.

    Google Scholar 

  • Quarteroni, A., and Sacchi Landriani, G. (1988). Domain decomposition preconditioners for the spectral collocation method,J. Sci. Comput. 45, 45–76.

    Google Scholar 

  • Ronquist, E. M. (1988). Optimal spectral element methods for the unsteady three-dimensional incompressible Navier-Stokes equations, Ph.D. thesis, Massachusetts Institute of Technology.

  • Ronquist, E. M., and Patera, A. T. (1987). Spectral element multigrid. I. Formulation and numerical results,J. Sci. Comput. 2(2), 389–406.

    Google Scholar 

  • Voigt, R. G., Gottlieb, D., and Hussaini, M. Y. (eds.) (1984).Spectral Methods for Partial Differential Equations, SIAM, Philadelphia.

    Google Scholar 

  • Zang, T. A., Wong, Y. S., and Hussaini, M. Y. (1982). Spectral multigrid methods for elliptic equations,J. Comput. Phys. 48, 485–501.

    Google Scholar 

  • Zang, T. A., Wong, Y. S., and Hussaini, M. Y. (1984). Spectral multigrid methods for elliptic equations II,J. Comput. Phys. 52, 489–507.

    Google Scholar 

  • Zang, T. A. (1988). Personal communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maday, Y., Munoz, R. Spectral element multigrid. II. Theoretical justification. J Sci Comput 3, 323–353 (1988). https://doi.org/10.1007/BF01065177

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01065177

Keywords

Navigation