Skip to main content
Log in

An Operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we present a simple, general methodology for the generation of high-order operator decomposition (“splitting”) techniques for the solution of time-dependent problems arising in ordinary and partial differential equations. The new approach exploits operator integration factors to reduce multiple-operator equations to an associated series of single-operator initial-value subproblems. Two illustrations of the procedure are presented: the first, a second-order method in time applied to velocity-pressure decoupling in the incompressible Stokes problem; the second, a third-order method in time applied to convection-Stokes decoupling in the incompressible Navier-Stokes equations. Critical open questions are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R. A. (1975).Sobolev Spaces, Academic Press, New York.

    Google Scholar 

  • Ames, W. F. (1977).Numerical Methods for Partial Differential Equations, Academic Press, New York.

    Google Scholar 

  • Arrow, K., Hurwicz, L., and Uzawa, H. (1958).Studies in Nonlinear Programming, Stanford University Press, Stanford.

    Google Scholar 

  • Benqué, J. P., Ibler, B., Keramsi, A., and Labadie, G. (1982). A new finite element method for Navier-Stokes equations coupled with a temperature equation, inProc. 4th Int. Symp. on Finite Elements in Flow Problems, Kawai, T. (ed). North-Holland, Amsterdam, pp. 295–301.

    Google Scholar 

  • Bristeau, M. O., Glowinski, R., and Periaux, J. (to appear). Numerical methods for the Navier-Stokes equations. Applications to the simulation of compressible and incompressible viscous flows.Comput. Phys. Rep.

  • Brooks, A. N., and Hughes, T. J. R. (1982). Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible

  • Navier-Stokes equations,Comput. Methods Appl. Meck Eng. 32, 199–259.

  • Bussing, T. R. A., and Murman, E. M. (1988). Finite volume method for the calculation of compressible chemically reacting flows, inAIAA J. 26, 1070–1078.

    Google Scholar 

  • Cahouet, J., and Chabard, J. P. (1988). Some fast three-dimensional finite element solvers for the generalized Stokes problem,Int. J. Numer. Methods Fluids 8, 869–895.

    Google Scholar 

  • Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (1988).Spectral Methods in Fluid Dynamics. Springer-Verlag, Berlin.

    Google Scholar 

  • Chao, Y., and Attard, A. (1985). A resolution of the stiffness problem of reactor kinetics,Nucl. Sci. Eng. 90, 40–46.

    Google Scholar 

  • Chorin, A. J. (1970). Numerical solution of incompressible flow problems, inStudies in Numerical Analysis 2, Ortega, J. M., and Rheinboldt, W. C. (eds.), SIAM, Philadelphia.

    Google Scholar 

  • Deville, M. O., Kleiser, L., and Montigny-Rannou, F. (1984). Pressure and time treatment for Chebyshev spectral solution of a Stokes problem,Int. J. Methods Fluids 4, 1149.

    Google Scholar 

  • Douglas, J., Jr. (1955).SIAM 3, 42.

    Google Scholar 

  • Ewing, R. E., and Russell, T. F. (1981). Multistep Galerkin methods along characteristics for convection-diffusion problems, inAdvances in Computer Methods for Partial Differential Equations-IV, Vichnevetsky, R., and Stepleman, R. S. (eds.), IMACS, Rutgers University, New Brunswick, New Jersey, pp. 28–36.

    Google Scholar 

  • Gear, C. W. (1971). Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Gear, C. W. (1980). Automatic multirate methods for ordinary differential equations,International Federation for Information Processing, North-Holland, Amsterdam.

    Google Scholar 

  • Girault, V., and Raviart, P. A. (1986).Finite Element Approximation of the Navier-Stokes Equations, Springer-Verlag, Berlin.

    Google Scholar 

  • Glowinski, R. (1984).Numerical Methods for Nonlinear Variational Problems, SpringerVerlag, Berlin.

    Google Scholar 

  • Golub, G. H., and Van Loan, C. F. (1983).Matrix Computations, John Hopkins University Press, Baltimore, Maryland.

    Google Scholar 

  • Gresho, P. M., Chan, S. T., Lee, R. L., and Upson, C. D. (1984). A modified finite element method for solving the time-dependent, incompressible Navier-Stokes equations, Part 1: Theory,Int. J. Numer. Methods Fluids 4, 557–598.

    Google Scholar 

  • Friesner, R. A., Tuckerman, L. S., Dornblaser, B. C., and Russo, T. V. (to appear). A method for exponential propagation of large systems of stiff nonlinear differential equations, in Proceedings of the Second Nobeyama Workshop on Supercomputers and Fluid Dynamics (Japan, 1989),J. Sci. Comput.

  • Ho, L. W. (1989). A Spectral Element Stress Formulation of the Navier-Stokes Equations, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge.

    Google Scholar 

  • Ho, L. W., Maday, Y., Patera, A. T., and Rønquist, E. M. (1990). A high-order Lagrangiandecoupling method for the incompressible Navier-Stokes equations,Comput. Methods Appl. Mech. Eng. (to appear).

  • Ho, L. W., and Patera, A. T. (1990a). A Legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows,Comput. Methods Appl. Mech. Eng. (to appear).

  • Ho, L. W., and Patera, A. T. (1990b). Variational formulation of three-dimensional viscous free-surface flows: Natural imposition of surface tension boundary conditions,Int. J. Numer. Methods Fluids (to appear).

  • Hofer, E. (1976). A partially implicit method for large stiff systems of ODE's with only a few equations introducing small time-constants,SIAM J. Numer. Anal. 13(5), 645.

    Google Scholar 

  • Karniadakis, G. E. (to appear). Spectral element simulations of laminar and turbulent flows in complex geometries,Appl. Numer. Math.

  • Karniadakis, G. E., Israeli, M., and Orszag, S.A. (submitted). High-order splitting methods for the incompressible Navier-Stokes equations.J. Comput. Phys.

  • Karniadakis, G. E., Mikic, B. B., and Patera, A. T. (1988). Minimum-dissipation transport enhancement by flow destabilization: Reynolds' analogy revisited,J. Fluid Mech. 192, 365–391.

    Google Scholar 

  • Kim, J., and Moin, P. (1985). Application of a fractional-step method to incompressible Navier-Stokes equations,J. Comput. Phys. 59, 308–323.

    Google Scholar 

  • Kovasznay, L. I. G. (1948). Laminar flow behind a two-dimensional grid. InProc. Cambridge Phil. Soc. 44, 58–62.

    Google Scholar 

  • Maday, Y., Meiron, D., Patera, A. T., and Rønquist, E. M. (submitted). Analysis of iterative method for the steady and unsteady Stokes problem: Application to spectral element discretizations.

  • Maday, Y., and Patera, A. T. (1989). Spectral element methods for the incompressible Navier-Stokes equations, inState of the Art Surveys in Computational Mechanics, Noor, A. K. (ed.). ASME, New York, pp. 71–143.

    Google Scholar 

  • Maday, Y., Patera, A. T., and Rønquist, E. M. (1987). A well-posed optimal spectral element approximation for the Stokes problem, ICASE Report No. 87-48.

  • Marchuk, G. (1971). On the theory of the splitting method. InNumerical Solution of Partial Differential Equations II, Hubbard, B. (ed). Academic Press, New York, p. 469.

    Google Scholar 

  • Orszag, S. A., Israeli, M., and Deville, M. O. (1986). Boundary conditions for incompressible flows,J. Sci. Comput. 1, 75.

    Google Scholar 

  • Palusinski, O. A., and Wait, J. V. (1978). Simulation methods for combined linear and nonlinear systems,Simulation 30(3), 85–94.

    Google Scholar 

  • Peaceman, D. W., and Rachford, H. H., Jr. (1955).SIAM 3, 28.

    Google Scholar 

  • Pironneau, O. (1982). On the transport-diffusion algorithm and its applications to the Navier-Stokes equations2,Numer. Math. 38, 309–332.

    Google Scholar 

  • Rogallo, R. S. (1977). An ILLIAC Program for the Numerical Simulation of Homogeneous Incompressible Turbulence. NASA TM-73203.

  • Rønquist, E. M. (1988). Optimal Spectral Element Methods for the Unsteady Three-Dimensional Incompressible Navier-Stokes Equations, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge.

    Google Scholar 

  • Saleh, R. A., and Newton, A. R. (1989). The exploitation of latency and multirate behavior using nonlinear relaxation for circuit simulation,IEEE Trans. Computer-Aided Design 8(12), 1286–1298.

    Google Scholar 

  • Spalart, P. R. (1986). Numerical Simulation of Boundary Layers, Part 1: Weak Formulation and Numerical Method, NASA TM-88222.

  • Strang, G. (1968). On the construction and comparison of difference schemes,SIAM J. Numer. Anal. 5(3), 506–517.

    Google Scholar 

  • Strang, G. (1990). Private communication.

  • Temam, R. (1984).Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam.

    Google Scholar 

  • Vandeven, H. (1990). Analysis of the eigenvalues of spectral differentiation operators, in Proceedings of the International Conference on Spectral and High-Order Methods for Partial Differential Equations,Comput. Methods Appl. Mech. Eng. (to appear).

  • Weidemann, J. A. C., and Trefethen, L. N. (1990). The eigenvalues of second-order spectral differentiation matrices.SIAM J. Numer. Anal, (to appear).

  • White, J., and Vincentelli, A. S. (1987).Relaxation Techniques for the Simulation of VLSI Circuits, Kluwer Academic Press, Boston.

    Google Scholar 

  • Yanenko, N. N. (1971).The Method of Fractional Steps, Springer, New York.

    Google Scholar 

  • Zang, T. A., and Hussaini, M. Y. (1986). On spectral multigrid methods for the timedependent Navier-Stokes equations,Appl. Math. Comput. 19, 359–372.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maday, Y., Patera, A.T. & Rønquist, E.M. An Operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow. J Sci Comput 5, 263–292 (1990). https://doi.org/10.1007/BF01063118

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01063118

Key words

Navigation