Skip to main content
Log in

Numerical simulation of high Rayleigh number convection

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A direct numerical simulation of thermal convection between horizontal plane boundaries has been performed, at a Rayleigh number Ra=9800Ra c , where Ra c is the critical Rayleigh number for the onset of convection. The flow is found to be fully turbulent, and analysis of the probability distributions for temperature fluctuations indicates that this is within the “hard turbulence” regime, as defined by the Chicago group. Good agreement is shown to exist between their experiments and the present simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonia, R. A., Satyaprakash, B. R., and Hussain, A. K. M. F. (1982).J. Fluid Mech. 119, 55.

    Google Scholar 

  • Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (1988).Spectral Methods in Fluid Dynamics, Springer-Verlag, New York.

    Google Scholar 

  • Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomas, S., Wu, X. Z., Zaleski, S., and Zanetti, G. (1989).J. Fluid Mech. 204, 1.

    Google Scholar 

  • Deardoff, J. W., and Willis, G. E. (1967).J. Fluid Mech. 28, 675.

    Google Scholar 

  • Drazin, P. G., and Reid, W. H. (1985).Hydrodynamic Stability, Cambridge University Press.

  • Eidson, T. M. (1985).J. Fluid Mech. 158, 245.

    Google Scholar 

  • Eidson, T. M., Hussaini, M. Y., and Zang, T. A. (1985). Proceedings of the Euromech 199 Direct and Large Eddy Simulation of Turbulent flows, Munich, Germany, September 10–October 2 (also ICASE Report 86-6, NASA Langley).

  • Grötzbach, G. (1983).J. Comput. Phys. 49, 241.

    Google Scholar 

  • Herring, J. R., and Wyngaard, J. C. (1985). Fifth Symposium on Turbulent Shear Flows, Cornell University, August.

  • Heslot, F., Castaing, B., and Libchaber, A. (1987).Phys. Rev. A 36, 5870.

    Google Scholar 

  • Krishnamurti, R. (1970).J. Fluid Mech. 42, 309.

    Google Scholar 

  • Libchaber, A., Sano, M., and Wu, X. Z. (private communication).

  • Malkus, W. V. R. (1954).Proc. R. Soc. (London) A225, 185.

    Google Scholar 

  • Sirovich, L. (1987).Q. Appl. Math. 45, 561.

    Google Scholar 

  • Sirovich, L. (1989).Physica D 37, 126.

    Google Scholar 

  • Sirovich, L., Balachandar, S., and Maxey, M. (1989)Phys. Fluids A 1, 1911.

    Google Scholar 

  • Sirovich, L., Maxey, M., and Tarman, H. (1988). InProceedings of the Sixth Symposium on Turbulent Shear Flows, Launder, B. E. (ed.), Springer-Verlag, Berlin, p. 68.

    Google Scholar 

  • Swarztrauber, P. (1986). Symmetric FFTs,Math. Comput. 47, 323–346.

    Google Scholar 

  • Tarman, I. H. (1989). Analysis of Turbulent Thermal Convection, Ph.D. thesis, Brown University.

  • Temperton, C. (1983). Self-sorting mixed-radix fast Fourier transforms,J. Comput. Phys. 52, 1–23.

    Google Scholar 

  • Yakhot, V. (1989).Phys. Fluids A 1, 175.

    Google Scholar 

  • Yakhot, V. (private communication).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balachandar, S., Maxey, M.R. & Sirovich, L. Numerical simulation of high Rayleigh number convection. J Sci Comput 4, 219–236 (1989). https://doi.org/10.1007/BF01061502

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061502

Key words

Navigation