Skip to main content
Log in

Spectral element multigrid. I. Formulation and numerical results

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A variational spectral element multigrid algorithm is proposed, and results are presented for a one-dimensional Poisson equation on a finite interval. The key features of the proposed algorithm are as follows: the nested spaces and associated hierarchical bases are intra-element, resulting in simple data structures and rapid tensor-product sum-factorization evaluations; smoothing is effected by readily constructed and efficiently inverted (diagonal) Jacobi preconditioners; the technique is readily parallelized within the context of a medium-grained paradigm; and the (work-deflated) multigrid convergence rate\(\bar \rho \) is bounded from above well below unity, and is only a weak function of the number of spectral elementsK, the (large) order of the polynomial approximation,N, and the number of multigrid levels,J. Preliminary tests indicate that these convergence properties persist in higher space dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babuska, I., and Dorr, M. R. (1981). Error estimates for the combinedh- and p-version of the finite element method.Numer. Math. 37, 257–277.

    Google Scholar 

  • Bank, R. E., and Douglas, C. C. (1985). Sharp estimates for multigrid rates of convergence with general smoothing and acceleration.SIAM J. Numer. Anal. 22, 617–633.

    Google Scholar 

  • Brand, K., Lemke, M., and Linden, J. (1986). Multigrid Bibliography. Arbeitspapiere der GMD (206). Gesellschaft für Mathematik und Datenverarbeitung.

  • Brandt, A. (1977). Multi-level adaptive solutions to boundary value problems.Math. Comp. 31, 330–390.

    Google Scholar 

  • Deville, M. O., and Mund, E. H. (1985). Chebyshev pseudospectral solution of second order elliptic equations with finite element preconditioning.J. Comput. Phys. 60, 517–533.

    Google Scholar 

  • Fischer, P., Rønquist, E. M., Dewey, D., and Patera, A. T. (1988). Spectral element methods: Algorithms and architectures. InProceedings of the First International Conference on Domain Decomposition Methods for Partial Differential Equations, Paris, Glowinski, R., Golub, G., Meurant, G., and Periaux, J. (eds.), 173–197. SIAM, Philadelphia.

    Google Scholar 

  • Gottlieb, D., and Lustman, L. (1983). The spectrum of the Chebyshev collocation operator for the heat equation,SIAM J. Numer. Anal. 20, 909–921.

    Google Scholar 

  • Gottlieb, D., and Orszag, S. A. (1977).Numerical Analysis of Spectral Methods. SIAM, Philadelphia.

    Google Scholar 

  • Hackbusch, W., and Trottenberg, U. (eds.) (1982).Multigrid Methods. Proceedings of the Conference Held at Koln-Porz, November 23–27, 1981. Springer-Verlag, New York.

    Google Scholar 

  • Maday, T., and Munoz, R. (1988). Spectral element multigrid. Part II: Theoretical justification.J. Sci. Comp. (submitted).

  • Maday, Y., and Patera, A. T. (1987). Spectral element methods for the incompressible Navier-Stokes equations. InState of the Art Surveys in Computational Mechanics, Noor, A. K. (ed.) (to appear). ASME, New York.

    Google Scholar 

  • Maitre, J. F., and Musy, F. (1983). Multigrid Methods: Convergence Theory in a Variational Framework. Technical Report 20, Université de Lyon.

  • McBryan, O. A., and Van de Velde, E. F. (1985). The multigrid method on parallel processors. InMultigrid Methods II. Proceedings of the 2nd European Conference on Multigrid Methods, Dold, A., and Eckmann, B. (eds.), 232–260. Springer-Verlag, New York.

    Google Scholar 

  • Orszag, S. A. (1980). Spectral methods for problems in complex geometries.J. Comput. Phys. 37, 70–92.

    Google Scholar 

  • Patera, A. T. (1984). A spectral element method for fluid dynamics; Laminar flow in a channel expansion.J. Comput. Phys. 54, 468–488.

    Google Scholar 

  • Phillips, T. N. (1987). Relaxation schemes for spectral multigrid methods.J. Comput. Appl. Math. 18, 149–162.

    Google Scholar 

  • Rønquist, E. M., and Patera, A. T. (1987a). A Legendre spectral element method for the Stefan problem.Int. J. Num. Methods Eng. 24, 2273–2299.

    Google Scholar 

  • Rønquist, E. M., and Patera, A. T. (1987b). A Legendre spectral element method for the incompressible Navier-Stokes equations. InProceedings of the Seventh GAMM Conference on Numerical Methods in Fluid Mechanics (to appear). Vieweg.

  • Stroud, A. H., and Secrest, D. (1966).Gaussian Quadrature Formulas. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Weideman, J. A. C., and Trefethen, L. N. (1987). The eigenvalues of second-order spectral differentiation matrices.SIAM J. Numer. Anal. (submitted).

  • Zang, T. A., Wong, Y. S., and Hussaini, M. Y. (1982a). Spectral multigrid methods for elliptic equations.J. Comput. Phys. 48, 485–501.

    Google Scholar 

  • Zang, T. A., Wong, Y. S., and Hussaini, M. Y. (1982b). Spectral multigrid methods for elliptic equations II.J. Comput. Phys. 54, 489–507.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rønquist, E.M., Patera, A.T. Spectral element multigrid. I. Formulation and numerical results. J Sci Comput 2, 389–406 (1987). https://doi.org/10.1007/BF01061297

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061297

Key words

Navigation