Skip to main content
Log in

Generalized vortex methods for free surface flow problems. II: Radiating waves

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Generalized vortex methods are applied to the study of free surface motion in incompressible, irrotational, inviscid, layered flows in which waves are generated by external means, such as the motion of submerged bodies. Radiation conditions are developed that allow outward-traveling waves to escape the computational domain without significant reflection. Numerical sponge layers are used to absorb outward-traveling waves. Applications are given to wave generation by surface pressure distributions and by translating submerged bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, G. R. (1980). A test of the method of Fink and Soh for following vortex-sheet motion,J. Fluid Mech. 100, 209.

    Google Scholar 

  • Baker, G. R., McCrory, R. L., Verdon, C. P., and Orszag, S. A. (1987). Rayleigh-Taylor instability of fluid layers,J. Fluid Mech. 178, 161.

    Google Scholar 

  • Baker, G. R., Meiron, D. I., and Orszag, S. A. (1980). Vortex simulations of the Rayleigh-Taylor instability,Phys. Fluids 23, 1485.

    Google Scholar 

  • Baker, G. R., Meiron, D. I., and Orszag, S. A. (1981). Applications of a generalized vortex method to nonlinear free-surface flows, inProc. 3nd Int. Conf. Numerical Ship Hydrodynamics, Dern, J. C., and Haussling, H. (eds.), Paris, p. 179.

  • Baker, G. R., Meiron, D. I., and Orszag, S. A. (1982). Generalized vortex methods for free-surface flow problems,J. Fluid Mech. 123, 477.

    Google Scholar 

  • Bender, C. M., and Orszag, S. A. (1978).Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York.

    Google Scholar 

  • Doctors, L. J., and Dagan, G. (1980). Comparison of nonlinear wave-resistance theories for a two-dimensional pressure distribution,J. Fluid Mech. 98, 647.

    Google Scholar 

  • Faltinsen, O. M. (1977). Numerical solution of transient nonlinear free-surface motion outside or inside moving bodies, inProc. 2nd Int. Conf. Numerical Ship Hydrodynamics, Wehausen and Salvesen (eds.), p. 347.

  • Haussling, H. J., and Coleman, R. M. (1979). Nonlinear water waves generated by an accelerated circular cylinder,J. Fluid Mech. 92, 767.

    Google Scholar 

  • Isaacson, M. de St. Q. (1982). Nonlinear-wave effects on fixed and floating bodies,J. Fluid Mech. 120, 267.

    Google Scholar 

  • Israeli, M., and Orszag, S. A. (1981). Approximation of radiation boundary conditions,J. Comput. Phys. 41, 115.

    Google Scholar 

  • Kellog, O. D. (1953).Foundations of Potential Theory, Dover, New York.

    Google Scholar 

  • Landweber, L., and Yih, C. S. (1956). Forces, moments and added masses for Rankine bodies,J. Fluid Mech. 1, 319.

    Google Scholar 

  • Longuet-Higgins, M. S., and Cokelet, E. D. (1976). The deformation of steep surface waves on water. I. A Numerical method of computation,Proc. R. Soc. London Ser. A 350, 1.

    Google Scholar 

  • Moore, D. W. (1983). Resonances introduced by discretization,IMA J. Appl. Math. 31, 1.

    Google Scholar 

  • Tuck, E. O. (1965). The effect of non-linearity at the free surface on flow past a submerged cylinder,J. Fluid Mech. 22, 401.

    Google Scholar 

  • von Kerczek, C., and Salvesen, N. (1977). Nonlinear free-surface effects—The dependence on Froude number, inProc. 2nd Int. Conf. Numerical Ship Hydrodynamics, Wehausen, J., and Salvesen, N. (eds.), University of California, Berkeley, p. 292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, G.R., Meiron, D.I. & Orszag, S.A. Generalized vortex methods for free surface flow problems. II: Radiating waves. J Sci Comput 4, 237–259 (1989). https://doi.org/10.1007/BF01061057

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061057

Key words

Navigation