Skip to main content
Log in

Solution of the incompressible Navier-Stokes equations by the nonlinear Galerkin method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Our aim in this article is to study a new method for the approximation of the Navier-Stokes equations, and to present and discuss numerical results supporting the method. This method, called the nonlinear Galerkin method, uses nonlinear manifolds which are close to the attractor, while in the usual Galerkin method, we look for solutions in a linear space, i.e., whose components are independent. The equation of the manifold corresponds to an interaction law between small and large eddies and it is derived by asymptotic expansion from the exact equation. We consider here the two- and three-dimensional space periodic cases in the context of a pseudo-spectral discretization of the equation. We notice however that the method applies as well to more general flows, in particular nonhomogeneous flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Constantin, P., Foias, C., Manley, O., and Temam, R. (1985).J. Fluid Mech. 150, 427.

    Google Scholar 

  2. Constantin, P., Foias, C., and Temam, R. Attractors representing turbulent flows,Memoirs of AMS, Providence, Rhode Island53(114), 67+vii.

  3. Foias, C., Manley, O., and Temam, R. (1988).Math. Mod. and Numer. Anal. 22, 93.

    Google Scholar 

  4. Foias, C., and Temam, R. (1979).J. Math. Pures Appl. 58, 339.

    Google Scholar 

  5. Fortin, A., Fortin, M., and Gervais, J. J. (1987).J. Comp. Phys. 70, 295.

    Google Scholar 

  6. Ghia, U., Ghia, K. N., and Shin, C. T. (1982).J. Comp. Phys. 65, 138.

    Google Scholar 

  7. Gustafson, K., and Halasi, K. (1987).J. Comp. Phys. 70, 271.

    Google Scholar 

  8. Kim, J., Moin, P., and Moser, R. (1987).J. Fluid Mech. 177, 133.

    Google Scholar 

  9. Laminie, J., Pascal, F., and Temam, R.J. Comp. Mech. (to appear).

  10. Marion, M., and Temam, R. (1989).SIAM J. Num. Anal. 26, 1139–1157.

    Google Scholar 

  11. Marion, M., and Temam, R. (1990).Numerische Mathematik 57, 205–226.

    Google Scholar 

  12. Moin, P., and Kim, J. (1982).J. Fluid Mech. 118, 341.

    Google Scholar 

  13. Temam, R. (1988). Infinite dimensional dynamical systems in mechanics and physics,Applied Mathematical Sciences Series, Springer-Verlag, New York,68.

    Google Scholar 

  14. Temam, R. (1989a).Math. Mod. and Numer. Anal. 23, 541–561.

    Google Scholar 

  15. Temam, R. (1989b).J. Fac. Sci. Tokyo Sec. (1989b).IA 36, 629–647.

    Google Scholar 

  16. Temam, R. (1991). Incremental unknowns in finite differences in M. Y. Hussaini, A. Kumar, and M. D. Salas (eds.),Algorithmic Trends in CFD in the 90's, Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubois, T., Jauberteau, F. & Temam, R. Solution of the incompressible Navier-Stokes equations by the nonlinear Galerkin method. J Sci Comput 8, 167–194 (1993). https://doi.org/10.1007/BF01060871

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01060871

Key words

Navigation