Skip to main content
Log in

Numerical solution of the kinematic dynamo problem for Beltrami flows in a sphere

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The article discusses computational aspects of the kinematic problem of magnetic field generation by a Beltrami flow in a sphere. Galerkin's method is applied with a functional basis consisting of Laplace operator eigenfunctions. Dominant eigenvalues of the magnetic induction operator and associated magnetic eigenmodes are obtained numerically for a certain Beltrami flow for magnetic Reynolds numbers up to 100. The eigenvalue problem is solved by a highly optimized iterative procedure, which is quite general and can be applied to numerical treatment of arbitrary linear stability problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovitz, M., and Stegun, I. A. (eds.) (1972).Handbook of Mathematical Functions, Dover Publications, New York.

    Google Scholar 

  • Adams, R. A. (1975).Sobolev Spaces, Academic Press, New York.

    Google Scholar 

  • Aitken, A. C. (1926). On Bernouilli's numerical solution of algebraic equations,Proc. R. Soc. Edinburgh 46, 289–305.

    Google Scholar 

  • Arnold, V. I. (1965). Sur la topologie des écoulements stationnaires des fluides parfaits,C. R. Acad. Sci. Paris 261, 17–20 (in French).

    Google Scholar 

  • Arnold, V. I. (1982). Several remarks on an antidynamo-theorem,Vest. Moscow Stale Univ. 6, 50–57 (in Russian).

    Google Scholar 

  • Arnold, V. I. (1984). On the evolution of magnetic field under the action of advection and diffusion, in Tikhomirov, V.M. Tikhomirov, V. M. (ed.),Some Problems of Modern Analysis, Moscow University Press (in Russian).

  • Arnold, V. I., and Korkina, E. I. (1983). The growth of a magnetic field in a three-dimensional incompressible flow,Vest. Moscow State Univ., Ser. Math. 3, 43–46 (in Russian).

    Google Scholar 

  • Arnold, V. I., Zeldovich, Ya. B., Ruzmaikin, A. A., and Sokoloff, D. D. (1982). Magnetic field in a stationary flow with stretching in Riemannian space,J. Exp. Theor. Phys. 81(6), 2052–2058 [Engl. transl':Sov. Phys. JETP 54, 1083–1086].

    Google Scholar 

  • Bell, R. A. (1990). IBM RISC System/6000 performance tuning for numerically intensive FORTRAN and C programs, IBM ITSC Technical Bulletin GG24-3611.

  • Brezinski, C. (1978).Algorithmes d'accélération de la convergence, Étude numérique, Édition Technip, Paris (in French).

  • Bullard, E. C., and Gellman, H. (1954). Homogeneous dynamos and terrestrial magnetism,Phil. Trans. R. Soc. A247, 213–278.

    Google Scholar 

  • Bullard, E. C., and Gubbins, D. (1977). Generation of magnetic fields by fluid motions of global scale,Geophys. Astrophys. Fluid Dynamics 8, 43–56.

    Google Scholar 

  • Busse, F. H. (1983). Recent developments in the dynamo theory of planetary magnetism,Ann. Rev. Earth Planet. Sci. 11, 241–268.

    Google Scholar 

  • Cowling, T. G. (1934). The magnetic field of sunspots,Month. Not. R. Astron. Soc. 94, 39–48.

    Google Scholar 

  • Cowling, T. G. (1957). The dynamo maintenance of steady magnetic fields,Q. J. Mech. Appl. Math. X, 129–136.

    Google Scholar 

  • Dombre, T., Frisch, U., Greene, J. M., Hénon, M., Mehr, A., and Soward, A. (1986). Chaotic streamlines in the ABC flows,J. Fluid Mech. 167, 353–391.

    Google Scholar 

  • Elsasser, W. M. (1946). Induction effects in terrestrial magnetism. I. Theory,Phys. Rev. 69, 106–116.

    Google Scholar 

  • Galloway, D. J., and Frisch, U. (1984). A numerical investigation of magnetic field generation in a flow with chaotic streamlines,Geophys. Astrophys. Fluid Dynamics 29, 13–18.

    Google Scholar 

  • Galloway, D. J., and Frisch, U. (1986). Dynamo action in a family of flows with chaotic streamlines,Geophys. Astrophys. Fluid Dynamics 36, 53–83.

    Google Scholar 

  • Galloway, D. J., and O'Brian, N. R. (1992). Numerical calculations of dynamos for ABC and related flows, submitted to Proceedings of the Nato ASI “Theory of Solar and Planetary Dynamos.”

  • Galloway, D. J., and Proctor, M. R. E. (1992). Numerical calculations of fast dynamos in smooth velocity fields with realistic diffusion,Nature 356, 691–693.

    Google Scholar 

  • Gilbert, A. D. (1991). Fast dynamo action in a steady chaotic flow.Nature 350, 483–485.

    Google Scholar 

  • Gilbert, A. D. (1992). Magnetic field evolution in steady chaotic flows,Phil. Trans. R. Soc. London A339, 627–656.

    Google Scholar 

  • Gokhberg, I. T., and Krein, M. G. (1965).Introduction to the Theory of Linear Non-Hermitian Operators in Hilbert Space, Nauka, Moscow (in Russian).

    Google Scholar 

  • Hénon, M. (1966). Sur la topologie des lignes de Courant dans un cas particulier,C. R. Acad. Sci. Paris 262, 312–314 (in French).

    Google Scholar 

  • Kantorovich, L. V., and Akimlov, G. P. (1984).Functional Analysis, Nauka, Moscow (in Russian).

    Google Scholar 

  • Krasnoselskii, M. A., Vaynikko, G. M., Zabreiko, P. P., Rutitskii, Ya. B., and Stetsenko, V. Ya. (1969).Approximate Solution of Operator Equations, Nauka, Moscow (in Russian).

    Google Scholar 

  • Krause, F., and Rädler, K.-H. (1980).Mean-Field Magnetohydrodynamics and Dynamo Theory, Academic-Verlag, Berlin.

    Google Scholar 

  • Kumar, S., and Roberts, P. H. (1975). A three-dimensional kinematic dynamo,Proc. R. Soc. A344, 235–258.

    Google Scholar 

  • Lions, J.-L., and Magenes, E. (1968).Problémes aux Limites Non Homogénes et Applications, Vol. 1.1, Dunod, Paris (in French).

    Google Scholar 

  • McCraken, D. D., and Dorn, W. S. (1964).Numerical Methods and FORTRAN Programming with Applications in Engineering and Science, John Wiley & Sons, New York.

    Google Scholar 

  • Mikhlin, S. G. (1970).Variational Methods in Mathematical Physics, Nauka, Moscow (in Russian).

    Google Scholar 

  • Moffatt, H. K. (1978).Magnetic Field Generation in Electrically Conducting Fluids, Cambridge University Press.

  • Parker, E. N. (1979).Cosmical Magnetic Fields, Clarendon Press.

  • Pekeris, C. L., Accad, Y. and Shkoller, B. (1973). Kinematic dynamos and the Earth's magnetic field,Phil. Trans. R. Soc. A275, 425–461.

    Google Scholar 

  • Priest, E. R. (1984).Solar Magneto-Hydrodynamics, D. Reidel, Dordrecht.

    Google Scholar 

  • Sobolev, S. L. (1966).Equations of Mathematical Physics, Nauka, Moscow (in Russian).

    Google Scholar 

  • Szegö, G. (1959).Orthogonal Polynomials, Amer. Math. Soc. Colloquium Publications.

  • Vilenkin, N. Ya. (1965).Special Functions and the Theory of Group Representations, Nauka, Moscow (in Russian).

    Google Scholar 

  • Vishik, M. M. (1988). On magnetic field generation by a three-dimensional steady flow of conducting fluid at high magnetic Reynolds number,Izv. Acad. Sci. USSR, Fiz. Zemli 3, 3–12 (in Russian).

    Google Scholar 

  • Vishik, M. M. (1989). Magnetic field generation by the motion of a highly conducting fluid,Geophys. Astrophys. Fluid Dynamics 48, 151–167.

    Google Scholar 

  • Watson, G. N. (1958).A Treatise on the Theory of Bessel functions, Cambridge University Press.

  • Wilkinson, J. H. (1965).The Algebraic Eigenvalue Problem, Oxford University Press, London.

    Google Scholar 

  • Zeldovich, Ya. B. (1956). The magnetic field in the two-dimensional motion of a conducting turbulent fluid.J. Exp. Theor. Phys. 31, 154–156; [Engl. transl.: (1957),Sov. Phys. JETP 4, 460–462].

    Google Scholar 

  • Zeldovich, Ya. B., and Ruzmaikin, A. A. (1980). The magnetic field in a conducting fluid in two-dimensional motion,J. Exp. Theor. Phys. 78, 980–986; [Engl. transl.:Sov. Phys. JETP 51, 493–497].

    Google Scholar 

  • Zeldovich, Ya. B., Ruzmaikin, A. A., and Sokoloff, D. D. (1983).Magnetic Fields in Astrophysics, Gordon and Breach, New York.

    Google Scholar 

  • Zheligovsky, V. A. (1987). On the stochastic behavior of trajectories of a class of flows in a sphere, inNumerical Modeling and Analysis of Geophysical Processes (Computational Seismology, issue 20), Nauka, Moscow, pp. 60–65 (in Russian).

    Google Scholar 

  • Zheligovsky, V. A. (1990). On magnetic field generation by a flow of a conducting medium with an internal scale, inComputer Analysis of Geophysical Fields (Computational Seismology, issue 23). Nauka, Moscow, pp. 161–181 (in Russian).

    Google Scholar 

  • Zheligovsky, V. A. (1992). A kinematic magnetic dynamo, sustained by a Beltrami flow in a sphere,Geophys. Astrophys. Fluid Dynamics (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheligovsky, V.A. Numerical solution of the kinematic dynamo problem for Beltrami flows in a sphere. J Sci Comput 8, 41–68 (1993). https://doi.org/10.1007/BF01060831

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01060831

Key words

Navigation