Skip to main content
Log in

A modern view of pharmacokinetics

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A modern view of pharmacokinetics must include both linear and nonlinear systems. Evidence of nonlinearities in pharmacokinetics go back to the early 1930's with the origination of the concept that ethyl alcohol is eliminated at a fixed rate independent of its concentration in the body. This paper contains references to over 160 articles which suggest evidence on nonlinearities in drug absorption, distribution, metabolism and excretion, and the pharmacokinetics of drug action. These works are reviewed in a format of six tables: Evidence for Nonlinearities in Drug Absorption; Drug Distribution; Drug Metabolism; Renal Excretion of Drugs and Metabolites; Biliary Excretion of Drugs; and Pharmacokinetics of Drug Action. Special attention is given to the equations used to describe nonlinear kinetics, the recognition of nonlinearities, nonlinear models, and the fitting of data. Seven guidelines are presented for use in possible future pharmacokinetic studies involving drug kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Widmark and J. Tandberg. Uber die Bedingungen fur die Akkumulation indifferenter narkoliken theoretische Bereckerunger.Biochem. Z. 147: 358–369 (1924).

    CAS  Google Scholar 

  2. T. Teorell. Kinetics of distribution of substances administered to the body. I. The extra-vascular modes of administration.Arch. Int. Pharmacodyn. 57: 205–225 (1937).

    CAS  Google Scholar 

  3. T. Teorell. Kinetics of distribution of substances administered to the body. II. The intra-vascular modes of administration.Arch. Int. Pharmacodyn. 57: 226–240 (1937).

    CAS  Google Scholar 

  4. E. Krüger-Thiemer. Nonlinear dose-concentration relationship.Il Farmao (Pavia) Ed. Sci. 23: 717–756 (1968).

    Google Scholar 

  5. L. Z. Benet and J. S. Turi. Use of general partial fraction theorem for obtaining inverse Laplace transforms in pharmacokinetic analysis.J. Pharm. Sci. 60: 1593–1594 (1971).

    CAS  PubMed  Google Scholar 

  6. L. Z. Benet. General treatment of linear mammillary models with elimination from any compartment as used in pharmacokinetics.J. Pharm. Sci. 61: 536–541 (1972).

    CAS  PubMed  Google Scholar 

  7. E. Widmark. Verteilung und Umwandlung des Äthylalkohols im Organismus des Hundes.Biochem. Z. 267: 128–134 (1933).

    CAS  Google Scholar 

  8. E. Widmark. Der Einfluss der Nahrungsbestandteile auf den Alkoholgehalt des Blutes.Biochem. Z. 267: 135–142 (1933).

    CAS  Google Scholar 

  9. J. G. Wagner and J. A. Patel. Variations in absorption and elimination rates of ethyl alcohol in a single subject.Res. Commun. Chem. Pathol. Pharm. 4: 61–76 (1972).

    CAS  Google Scholar 

  10. W. Wilbrandt and P. Rosenberg. The concept of carrier transport and its corollaries in pharmacology.Pharmacol. Rev. 13: 109–183 (1961).

    CAS  PubMed  Google Scholar 

  11. C. S. Patlak. Contributions to the theory of active transport. III. The effect of drugs on active transport systems.Bull. Math. Biophys. 23: 173–195 (1961).

    Google Scholar 

  12. G. Levy and W. J. Jusko. Factors affecting the absorption of riboflavin in man.J. Pharm. Sci. 55: 285–289 (1966).

    CAS  PubMed  Google Scholar 

  13. H. Ochsenfahrt and D. Winne. Intestinal blood flow and drug absorption from the rat jejunum.Life Sci. 7: 493–498 (1968).

    CAS  PubMed  Google Scholar 

  14. M. Rowland, S. Riegelman, and W. L. Epstein. Absorption kinetics of griseofulvin in man.J. Pharm. Sci. 57: 984–989 (1968).

    CAS  PubMed  Google Scholar 

  15. G. W. Hepner, C. C. Booth, J. Cowan, A. V. Hoffbrand, and D. L. Mollin. Absorption of crystalline folic acid in man.Lancet, Aug. 10, pp. 302–306 (1968).

  16. W. B. Strum, P. F. Nixon, H. J. Binder, and J. R. Bertino. Intestinal absorption of 5-methyltetrahydrofolate (MTHF).Clin. Res. 18: 389 (1970) (abst.).

    Google Scholar 

  17. F. Lauterback. Comparison of intestinal penetration of cortisol and conuallatexin: Demonstration of a transport mechanism for cariotonic steroids.Biochim. Biophys. Acta 150: 146–155 (1968).

    Google Scholar 

  18. K. Kakemi, T. Arita, R. Hori, R. Konishi, and K. Nishimura. Absorption and excretion of drugs. XXXIII. The correlation between the absorption of barbituric acid derivatives from the rat small intestine and their binding to the mucosa.Chem. Pharm. Bull. (Tokyo) 17: 248–254 (1969).

    CAS  Google Scholar 

  19. A. Suzuki, W. I. Higuchi, and N. F. H. Ho. Theoretical model studies of drug absorption and transport in the gastrointestinal tract. I.J. Pharm. Sci. 59: 651–659 (1970).

    CAS  PubMed  Google Scholar 

  20. W. Crouthamel, J. T. Doluisio, R. E. Johnson, and L. Diamond. Effect of mesenteric blood flow on intestinal drug absorption.J. Pharm. Sci. 59: 878–879 (1970).

    CAS  PubMed  Google Scholar 

  21. D. Winne. Formal kinetics of water and solute absorption with regard to intestinal blood flow.J. Theoret. Biol. 27: 1–18 (1970).

    CAS  Google Scholar 

  22. P. Lauger and G. Stark. Kinetics of carrier-mediated ion transport across lipid bilayer membranes.Biochim. Biophys. Acta 211: 458–466 (1970).

    CAS  PubMed  Google Scholar 

  23. C. McMartin and P. Simpson. The absorption and metabolism of guanethidine in hypertensive patients requiring different doses of the drug.Clin. Pharmacol. Therap. 12: 73–77 (1971).

    CAS  Google Scholar 

  24. J. C. Dearden and E. Tomlinson. Buccal absorption as a parameter of analgesic activity of somep-substituted acetanilides.J. Pharm. Pharmacol. 23: 73S-76S (1971) (suppl.).

    CAS  PubMed  Google Scholar 

  25. T. Fuwa, T. Iga, M. Nakano, H. Nogami, and K. Kashima. Biopharmaceutical studies on indomethacin. II. Mechanism of intestinal absorption of indomethacin in ratin vitro and availability of micronized powder after oral administration in man.J. Pharm. Soc. Japan 91: 1223–1227 (1971).

    CAS  Google Scholar 

  26. R. B. Smith, L. W. Dittert, W. O. Griffen, Jr., and J. T. Doluisio. Pharmacokinetics of pentobarbital after intravenous and oral administration.J. Pharmacokin. Biopharm. 1: 5–16 (1973).

    CAS  Google Scholar 

  27. J. G. Wagner and A. J. Sedman. Quantitation of rate of gastrointestinal and buccal absorption of acidic and basic drugs based on extraction theory.J. Pharmacokin. Biopharm. 1: 23–50 (1973).

    CAS  Google Scholar 

  28. W. H. Barr and S. Riegelman. Intestinal drug absorption and metabolism. I. Comparison of methods and models to study physiological factors ofin vitro andin vivo intestinal absorption.J. Pharm. Sci. 57: 154–163 (1970).

    Google Scholar 

  29. W. H. Barr and S. Riegelman. Intestinal drug absorption and metabolism. II. Kinetic aspects of intestinal glucuronide conjugation.J. Pharm. Sci. 59: 164–168 (1970).

    CAS  PubMed  Google Scholar 

  30. J. A. Jacquez, R. Bellman, and R. Kalaba. Some mathematical aspects of chemotherapy. II. The distribution of a drug in the body.Bull. Math. Biophys. 22: 309–322 (1960).

    CAS  Google Scholar 

  31. L. A. Carlson and D. Hallberg. Studies on the elimination of exogenous lipids from the blood stream. The kinetics of the elimination of a fat emulsion and of chylmicrones in the dog after a single injection.Acta. Physiol. Scand. 59: 52–61 (1963).

    CAS  PubMed  Google Scholar 

  32. D. Hallberg. Studies on the elimination of exogenous lipids from the blood stream. The kinetics of the elimination of a fat emulsion studied by a constant infusion technique in man.Acta Physiol. Scand. 64: 299–305 (1965).

    CAS  PubMed  Google Scholar 

  33. D. Hallberg. Studies on the elimination of exogenous lipids from the blood stream. The kinetics of the elimination of a fat emulsion studied by single injection technique in man.Acta Physiol. Scand. 64: 306–313 (1965).

    CAS  PubMed  Google Scholar 

  34. E. Andersson, B. Norberg, and A. C. Teger-Nilsson. On the import of the clinical determination of the so-called hepatic mass (hm) with bromsulfalein.Scand. J. Clin. Lab. Invest. 15: 517–522 (1963).

    CAS  PubMed  Google Scholar 

  35. C. A. Goresky. Initial distribution and rate of uptake of sulfobromophthalein in the liver.Am. J. Physiol. 207: 13–26 (1964).

    CAS  PubMed  Google Scholar 

  36. K. Winkler and N. Tygstrup. The day-to-day variations in bromsulfalein elimination curves.Scand. J. Clin. Lab. Invest. 16: 481–490 (1964).

    CAS  PubMed  Google Scholar 

  37. B. H. Marks, S. Dutta, J. Gauthier, and D. Elliott. Distribution in plasma, uptake by the heart and excretion of ouabain-H3 in human subject.J. Pharmacol. Exptl. Therap. 145: 351–356 (1964).

    CAS  Google Scholar 

  38. L. S. Schanker and A. S. Morrison. Physiological disposition of guanethidine in the rat and its uptake by heart slices.Internat. J. Neuropharmacol. 4: 23–39 (1965).

    Google Scholar 

  39. E. S. Henderson, R. H. Adamson, C. Denham. and V. T. Oliverio. The metabolic fate of tritiated methotrexate. I. Absorption, excretion, and distribution in mice, rats, dogs and monkeys.Cancer Res. 25: 1008–1018 (1965).

    CAS  PubMed  Google Scholar 

  40. D. S. Zaharko, R. L. Dedrick, and V. T. Oliverio. Time and dose dependent tissue concentration of methotrexate.Fed. Proc. 29: 932 (1970) (abst.).

    Google Scholar 

  41. K. G. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharma-cokinetics.J. Pharm. Sci. 60: 1128–1133 (1971).

    CAS  PubMed  Google Scholar 

  42. H. Stupp, S. Ruck, H. Sous. J. P. Brun, and F. Legier. Kanamycin dosage and levels in ear and other organs.Arch. Ololaryngol. 86: 515–521 (1967).

    CAS  Google Scholar 

  43. S. D. Sholkoff, E. J. Eyering, M. Rowland, and S. Riegelman. Plasma and synovial fluid concentrations of acetylsalicyclic acid in patients with rheumatoid arthritis.Arth. Rheum. 10: 348–351 (1967).

    CAS  Google Scholar 

  44. R. Nagashima, G. Levy, and E. Nelson. Comparative pharmacokinetics of coumarin anticoagulants. I. Unusual interaction of bishydroxycoumarin with plasma proteins— development of a new assay.J. Pharm. Sci. 57: 58–67 (1968).

    CAS  PubMed  Google Scholar 

  45. R. Nagashima, G. Levy, and E. J. Sarcione. Comparative pharmacokinetics of coumarin anticoagulants. III. Factors affecting the distribution and elimination of bishydroxycoumarin (BHC) in isolated liver perfusion studies.J. Pharm. Sci. 57: 1881–1888 (1968).

    CAS  PubMed  Google Scholar 

  46. R. Nagashima, G. Levy, and R. A. O'Reilly. Comparative pharmacokinetics of coumarin anticoagulants. IV. Application of a three-compartmental model to the analysis of the dose-dependent kinetics of bishydroxycoumarin elimination.J. Pharm. Sci. 57: 1888–1895 (1968).

    CAS  PubMed  Google Scholar 

  47. G. Levy and R. Nagashima. Comparative pharmacokinetics of coumarin anticoagulants. VI. Effect of plasma protein binding on the distribution and elimination of bishydroxy-coumarin by rats.J. Pharm. Sci. 58: 1001–1004 (1969).

    CAS  PubMed  Google Scholar 

  48. W. H. Oldendorf. Dose-dependence of the rapid reappearance in blood of very small intravenous doses of Se75 Selenite.Internat. J. Appl. Radiation Isotopes 19: 411–414 (1968).

    CAS  Google Scholar 

  49. K. B. Bischoffand R. L. Dedrick. Thiopental pharmacokinetics.J. Pharm. Sci. 57: 1347–1357 (1968).

    Google Scholar 

  50. R. L. Dixon, E. S. Owens, and D. P. Rall. Evidence of active transplant of benzyl-14C-penicillin from cerebrospinal fluid to blood.J. Pharm. Sci. 58: 1106–1109 (1969).

    CAS  PubMed  Google Scholar 

  51. P. F. Binnion, L. M. Morgan, H. M. Stevenson, and E. Fletcher. Plasma and myocardial digoxin concentrations in patients on oral therapy.Brit. Heart J. 31: 636–640 (1969).

    CAS  PubMed Central  PubMed  Google Scholar 

  52. G. Paumgartner, P. Probst, R. Kraines, and C. M. Leevy. Kinetics of indocyanine green removal from the blood.Ann. N.Y. Acad. Sci. 170: 134–147 (1970).

    CAS  Google Scholar 

  53. J. C. Drach, J. P. Howell, P. E. Borony, and A. J. Glazko. Species differences in the metabolism of diphenhydramine (Benadryl).Proc. Soc. Exptl. Biol. Med. 135: 849–853 (1970).

    CAS  Google Scholar 

  54. E. D. Rees, P. Mandelstram, J. Q. Lowry, and H. Lipscomb. A study on the metabolism of intestinal absorption of benzopyrene (BBA 75555).Biochim. Biophys. Ada 225: 96–107 (1971).

    CAS  Google Scholar 

  55. J. J. Timmes, N. J. Demos, and S. I. Chong. Lung tissue and serum levels of methacycline.Clin. Pharmacol. Therap. 12: 920–922 (1971).

    CAS  Google Scholar 

  56. A. R. DiSanto and J. G. Wagner. Pharmacokinetics of highly ionized drugs. I. Methylene blue—whole blood, urine and tissue assays.J. Pharm. Sci. 61: 598–602 (1972).

    CAS  PubMed  Google Scholar 

  57. A. R. DiSanto and J. G. Wagner. Pharmacokinetics of highly ionized drugs. III. Methylene blue—blood levels in the dog and tissue levels in the rat following intravenous administration.J. Pharm. Sci. 61: 1090–1094 (1972).

    CAS  PubMed  Google Scholar 

  58. R. G. Wiegand and A. H. C. Chun. Serum protein binding of erythromycin and erythromycin 2-propionate ester.J. Pharm. Sci. 61: 425–428 (1972).

    CAS  PubMed  Google Scholar 

  59. D. S. Alberts, M. R. Bachur, and J. L. Holtzman. The pharmacokinetics of daunomycin in man.Clin. Pharmacol. Therap. 12: 96–104 (1971).

    CAS  Google Scholar 

  60. R. Nagashima and G. Levy. Effect of perfusion rate and distribution factors on drug elimination kinetics in a perfused organ system.J. Pharm. Sci. 57: 1991–1993 (1968).

    CAS  PubMed  Google Scholar 

  61. J. B. Hill. The effect of altering blood pH on rat tissue and plasma salicylate concentrations.Fed. Proc. 29: 934 (1970) (abst.).

    Google Scholar 

  62. S. M. Somani, D. Schumacher, R. Thomson, and R. H. McDonald, Jr. Characterization of the distribution of secobarbital and its compartmental simulation.Fed. Proc. 30(2): 335 (1971) (abst.).

    Google Scholar 

  63. W. L. Chiou and S. Riegelman. Disposition kinetics of griseofulvin in dogs.J. Pharm. Sci. 58: 1500–1504 (1969).

    CAS  PubMed  Google Scholar 

  64. L. E. Mather, G. J. Long, and J. T. Thomas. The intravenous toxicity and clearance of bupivacaine in man.Clin. Pharmacol. Therap. 12: 935–943 (1971).

    CAS  Google Scholar 

  65. M. Tomura and T. Akera. Relationship between dose and plateau levels of drugs eliminated by parallel first-order and capacity-limited kinetics.Jap. J. Pharmacol. 21: 682–685 (1971).

    CAS  PubMed  Google Scholar 

  66. M. G. Eggleton. Some factors affecting the metabolic rate of alcohol.J. Physiol. (Lond.) 98: 239–254 (1940).

    CAS  Google Scholar 

  67. F. Lundquist and H. Wolthers. The kinetics of alcohol elimination in man.Acta Pharmacol. Toxicol. 14: 265–289 (1958).

    CAS  Google Scholar 

  68. H. G. Bray, W. V. Thorpe, and K. White. Kinetic studies of the metabolism of foreign organic compounds. I. The formation of benzoic acid from benzamide, toluene, benzyl alcohol and benzaldehyde and its conjugation with glycine and glucuronic acid in the rabbit.Biochem. J. 48: 88–96 (1951).

    CAS  PubMed Central  PubMed  Google Scholar 

  69. D. Schachter and J. G. Manis. Salicylate and salicyl conjugates. Fluorimetric estimation. Biosynthesis and renal excretion in man.J. Clin. Invest. 37: 800–807 (1958).

    CAS  PubMed Central  PubMed  Google Scholar 

  70. G. Levy. Salicylurate formation—Demonstration of Michaelis-Menten kinetics in man.J. Pharm. Sci. 54: 496 (1965).

    CAS  PubMed  Google Scholar 

  71. G. Levy. Pharmacokinetics of salicylate elimination in man.J. Pharm. Sci. 54: 959–967 (1965).

    CAS  PubMed  Google Scholar 

  72. E. Nelson, M. Hanano, and G. Levy. Comparative pharmacokinetics of salicylate elimination in man and rats.J. Pharmacol. Exptl. Therap. 153: 159–166 (1966).

    CAS  Google Scholar 

  73. G. Levy. Dose-dependent effects in pharmacokinetics. In D. H. Tedeschi and R. E. Tedeschi (eds.),Importance of Fundamental Principles in Drug Evaluation, Raven Press, New York. 1968. pp. 141–172.

    Google Scholar 

  74. G. Levy and S. J. Yaffe. The study of salicylate pharmacokinetics in intoxicated infants and children.Clin. Toxicol. 1: 409–424 (1968).

    Google Scholar 

  75. G. Levy, L. P. Amsel, and H. C. Elliott. Kinetics of salicyluric acid elimination in man.J. Pharm. Sci. 58: 827–829 (1969).

    CAS  PubMed  Google Scholar 

  76. G. Levy, A. W. Vogel, and L. P. Amsel. Capacity-limited salicylurate formation during prolonged administration of aspirin to healthy human subjects.J. Pharm. Sci. 58: 503–504 (1969).

    CAS  PubMed  Google Scholar 

  77. G. Levy and H. Yamada. Estimation of drug metabolite elimination kinetics in man by the synthesis-blocking method.J. Pharm. Pharmacol. 22: 964–965 (1970).

    CAS  PubMed  Google Scholar 

  78. G. Levy, L. Weintraub, T. Matsuzawa, and S. R. Oles. Absorption metabolism and excretion of salicyl phenolic glucuronide in rats.J. Pharm. Sci. 55: 1319–1320 (1966).

    CAS  PubMed  Google Scholar 

  79. G. Levy. Saturation of glucuronide formation in man and its clinical implications.Chem. Biol. Interactions 3: 291 (1971).

    CAS  Google Scholar 

  80. G. Levy, T. Tsuchiya, and L. P. Amsel. Limited capacity for salicyl phenolic glucuronide formation and its effect on the kinetics of salicylate elimination in man.Clin. Pharmacol. Therap. 13: 258–268 (1972).

    CAS  Google Scholar 

  81. G. Levy and L. P. Amsel. Kinetics of competitive inhibitions of salicylic acid conjugation with glycine in man.Biochem. Pharmacol. 15: 1033–1038 (1966).

    CAS  PubMed  Google Scholar 

  82. G. Levy and J. A. Procknal. Drug biotransformation interactions in man. I. Mutual inhibition in glucuronide formation of salicylic acid and salicylamide in man.J. Pharm. Sci. 57: 1330–1334 (1968).

    CAS  PubMed  Google Scholar 

  83. L. P. Amsel and G. Levy. Drug transformation interactions in man. II. A pharmaco-kinetic study of the simultaneous conjugation of benzoic and salicylic acids with glycine.J. Pharm. Sci. 58: 321–326 (1969).

    CAS  PubMed  Google Scholar 

  84. P. Nordquist, J. G. Harthon, and R. Karlsson. Metabolic kinetics of salicylsalicylic acid, aspirin and sodium salicylate in man.Nord. Med. 74: 1024–1026 (1965).

    Google Scholar 

  85. G. Levy and T. Matsuzawa. Role of sulfate formation in biotransformation of salicylamide in man.J. Pharm. Sci. 55: 222–223 (1966).

    CAS  PubMed  Google Scholar 

  86. G. Levy and T. Matsuzawa. Pharmacokinetics of salicylamide elimination in man.J. Pharmacol. Exptl. Therap. 156: 285–293 (1967).

    CAS  Google Scholar 

  87. W. H. Barr and S. Riegelman. Effect of capacity limited metabolism on plasma levels of free salicylamide in man. Presented to APhA Academy of Pharmaceutical Sciences, May 6, 1968, Miami Beach, Fla.

  88. G. Levy and H. Yamada. Drug biotransformation interactions in man. III. Acetaminophen and salicylamide.J. Pharm. Sci. 60: 215–221 (1971).

    CAS  PubMed  Google Scholar 

  89. G. Levy and G. C. Regardh. Drug biotransformation interactions in man. V. Acetaminophen and salicylic acid.J. Pharm. Sci. 60: 608–611 (1971).

    CAS  PubMed  Google Scholar 

  90. K. Kakemi, T. Arita, H. Sezaki. and M. Nakano. Absorption and excretion of drugs. XVI. Inhibition of isoniazid acetylation by p-aminobenzaldehyde and its related compounds.J. Pharm. Soc. Japan 83: 260–263 (1963).

    CAS  Google Scholar 

  91. M. M. Drucker, S. H. Blondheim, and L. Wislicki. Factors affecting acetylationin vivo of para-aminobenzoic acid by human subjects.Clin. Sci. 26: 133–141 (1964).

    Google Scholar 

  92. P. G. Dayton, S. A. Cucinell, M. Weiss, and J. M. Perel. Dose-dependence of drug plasma level decline in dogs.J. Pharmacol. Exptl. Therap. 158: 305–316 (1967).

    CAS  Google Scholar 

  93. R. Nagashima. G. Levy, and N. Back. Comparative pharmacokinetics of coumarin anticoagulants. II. Pharmacokinetics of bishydroxycoumarin elimination in the rat, guinea pig, dog and rhesus monkey.J. Pharm. Sci. 57: 68–71 (1968).

    CAS  PubMed  Google Scholar 

  94. R. Nagashima and G. Levy. Comparative pharmacokinetics of coumarin anticoagulants. III. Factors affecting the distribution and elimination of bishydroxycoumarin (BHC) in isolated liver perfusion studies.J. Pharm. Sci. 58: 845–849 (1969).

    CAS  PubMed  Google Scholar 

  95. J. G. Wagner and R. E. Damiano. Relationship among area under serum concentration curve, dose, and half-life for novobiocin administered in combination with tetracycline.J. Clin. Pharmacol. J. New Drugs 8: 102–112 (1968).

    CAS  PubMed  Google Scholar 

  96. A. A. Kondritzer, P. Zvirblis. A. Goodman, and S. H. Paplanus. Blood plasma levels and elimination of salts in 2-PAM in man after oral administration.J. Pharm. Sci. 57: 1142–1146 (1968).

    CAS  PubMed  Google Scholar 

  97. F. R. Sidell, W. A. Groff, and R. I. Ellin. Blood levels of oxime and symptoms in humans after single and multiple oral doses of 2-pyridine aldoxime methochloride.J. Pharm. Sci. 58: 1093–1098 (1969).

    CAS  PubMed  Google Scholar 

  98. J. W. Estes, E. W. Pelikan, and E. Krüger-Thiemer. A retrospective study of the pharmaco-kinetics of heparin.Clin. Pharmacol. Therap. 10: 329–337 (1969).

    CAS  Google Scholar 

  99. J. G. Wagner. Design and data analysis of biopharmaceutical studies in man.Can. J. Pharm. Sci. 1: 55–68 (1966).

    CAS  Google Scholar 

  100. J. T. Doluisio and L. W. Dittert. Dosing of tetracyclines on biologic half-life in serum.Clin. Pharmacol. Therap. 10: 690–701 (1969).

    CAS  Google Scholar 

  101. J. Shibasaki, T. Koizumi, and T. Tanaka. Drug absorption, metabolism and excretion. I. Some pharmacokinetic aspects of metabolism of acetanilide and 4-hydroxylacetanilide.Chem. Pharm. Bull. (Tokyo) 16: 1661–1673 (1968).

    CAS  Google Scholar 

  102. A. J. Glazko, T. Chang, J. Baukema, W. A. Dill, J. R. Goulet, and R. A. Buchanan. Metabolic disposition of diphenylhydantoin in normal human subjects following intravenous administration.Clin. Pharmacol. Therap. 10: 498–504 (1969).

    CAS  Google Scholar 

  103. T. Suzuki, Y. Saitoh, and K. Nishihara. Kinetics of diphenylhydantoin disposition in man.Chem. Pharm. Bull. (Tokyo) 18: 405–411 (1970).

    CAS  Google Scholar 

  104. M. Blum, I. McGilveray, C. Becker, and S. Riegelman. Clinical implications derived from pharmacokinetics of diphenylhydantoin (DPH).Clin. Res. 19: 121 (1971) (abst.).

    Google Scholar 

  105. K. Arnold and N. Gerber. The rate of decline of diphenylhydantoin in human plasma.Clin. Pharmacol. Therap. 11: 121–134 (1970).

    CAS  Google Scholar 

  106. N. Gerber and K. Arnold. Studies on the metabolism of diphenylhydantoin in mice.J. Pharmacol. Exptl. Therap. 167: 77–89 (1969).

    CAS  Google Scholar 

  107. N. Gerber, W. L. Weller, R. Lynn, R. E. Rangno, B. J. Sweetman, and M. T. Bush. Study of dose-dependent metabolism of 5,5-diphenylhydantoin in the rat using new methodology for isolation and quantitation of metabolitesin vivo andin vitro.J. Pharmacol. Exptl. Therap. 178: 567–579 (1971).

    CAS  Google Scholar 

  108. N. Gerber and J. G. Wagner. Explanation of dose-dependent decline of diphenylhydantoin plasma levels by fitting to the integrated form of the Michaelis-Menten equation.Res. Commun. Chem. Pathol. Pharm. 3: 445–466 (1972).

    Google Scholar 

  109. J. G. Wagner. Properties of the Michaelis-Menten equation and its integrated form which are useful in pharmacokinetics.J. Pharmacokin. Biopharm. 1: 103–121 (1973).

    CAS  Google Scholar 

  110. K. Balasubramaniam, G. E. Mawer, and P. J. Simons. The influence of dose on the distribution and elimination of amylobarbitone in healthy subjects.Brit. J. Pharmacol. 40: 578P-579P (1970).

    CAS  Google Scholar 

  111. G. H. Mudge and I. M. Weiner. Renal excretion of weak organic acids and bases. In C. A. M. Hogben (ed.),Drugs and Membranes, Vol. IV, pp. 157–164.

  112. I. M. Weiner and G. H. Mudge. Renal tubular mechanisms for excretion of organic acids and bases.Am. J. Med. Sci. 36: 743–762 (1964).

    CAS  Google Scholar 

  113. I. M. Weiner, K. C. Blanchard, and G. H. Mudge. Factors influencing renal excretion of foreign organic acids.Am. J. Physiol. 207: 953–963 (1964).

    CAS  PubMed  Google Scholar 

  114. I. M. Weiner, J. E. Glasser, and L. Lack. Renal excretion of bile acids:Taurocholic, glycocholic and cholic acids.Am. J. Physiol. 207: 964–970 (1964).

    CAS  PubMed  Google Scholar 

  115. A. H. Beckett and M. Rowland. Rhythmic urinary excretion of amphetamine in man.Nature 204: 1203–1204 (1964).

    CAS  PubMed  Google Scholar 

  116. K. C. Huang and D. S. T. Lin. Kinetic studies on transport of PAH and other organic acids in isolated renal tubules.Am. J. Physiol. 208: 391–396 (1965).

    CAS  PubMed  Google Scholar 

  117. W. J. Jusko, G. Levy, S. Y. Yaffe, and R. Gorodescher. Effect of probenecid on renal clearance of riboflavin in man.J. Pharm. Sci. 59: 473–477 (1970).

    CAS  PubMed  Google Scholar 

  118. W. J. Jusko, G. Levy, S. Y. Yaffe, and R. Gorodescher. Pharmacokinetic evidence for saturable renal tubular reabsorption of riboflavin.J. Pharm. Sci. 59: 765–772 (1970).

    CAS  PubMed  Google Scholar 

  119. L. Dettli and P. Spring. Diurnal variations in the elimination rate of sulfonamide in man.Helv. Med. Acta 33: 291–306 (1966).

    Google Scholar 

  120. A. H. Beckett, R. N. Soyes, and G. T. Tucker. Use of the analogue computer to examine the quantitative relation between urinary pH and kidney reabsorption of drugs partially ionized at physiological pH.J. Pharm. Pharmacol. 20: 269–276 (1968).

    CAS  PubMed  Google Scholar 

  121. A. H. Beckett, R. N. Boyes, and G. T. Tucker. Use of the analogue computer to predict the distribution and excretion of drugs under conditions of fluctuating urinary pH.J. Pharm. Pharmacol. 20: 277–282 (1968).

    CAS  PubMed  Google Scholar 

  122. M. Pfeffer, J. M. Schor, S. Bolton, and R. Jacobson. Human urinary excretion of the quaternary ammonium compounds anisotropine methylbromide and propantheline bromide.J. Pharm. Sci. 57: 1375–1379 (1968).

    CAS  PubMed  Google Scholar 

  123. J. Shibasaki, T. Koizumi, and W. Higuchi. Drug absorption, metabolism and excretion. IV. Pharmacokinetic studies on renal transport. I. Simultaneous chemical reaction and diffusion (SCRD) model for uphill transport.Chem. Pharm. Bull. (Tokyo) 16: 2273–2277 (1968).

    CAS  Google Scholar 

  124. J. Shibasaki, R. Konishi, Y. Takeda, and T. Koizumi. Drug absorption, metabolism and excretion. VII. Pharmacokinetics of formation and excretion of the conjugates ofN-acetyl-p-aminophenol in rabbits.Chem. Pharm. Bull. (Tokyo) 19: 1800–1808 (1971).

    CAS  Google Scholar 

  125. A. R. DiSanto and J. G. Wagner. Pharmacokinetics of highly ionized drugs. II. Methylene blue—absorption, metabolism, and excretion in man and dog after oral administration.J. Pharm. Sci. 61: 1086–1094 (1972).

    CAS  PubMed  Google Scholar 

  126. J. B. Nagwekar and A. Unnikrishnan. Michaelis-Menten kinetics of renal tubular secretion of d-(—)-p-methyl mandelic acid and d-(—)-p-ethyl mandelic acid in rats.J. Pharm. Sci. 60: 375–380 (1971).

    CAS  PubMed  Google Scholar 

  127. L. S. Schanker. Concentrative transfer of an organic cation from blood into bile.Biochem. Pharmacol. 11: 253–254 (1962).

    CAS  PubMed  Google Scholar 

  128. L. J. Schoenfield, D. B. McGill, and W. T. Foulk. Studies of suifobromophthalein sodium (BSP) metabolism in man. III. Demonstration of a transport maximum (Tm) for biliary excretion of BSP.J. Clin. Invest. 43: 1424–1432 (1964).

    CAS  PubMed Central  PubMed  Google Scholar 

  129. R. T. Williams, P. Milburn, and R. L. Smith. The influence of enterohepatic circulation on toxicity of drugs.Ann. N.Y. Acad. Sci. 123: 110–124 (1965).

    CAS  PubMed  Google Scholar 

  130. C. Lanman, S. Muranishi, and L. S. Schanker. Active transport of tetracycline into bile.Pharmacologist 12: 293 (1970) (abst.).

    Google Scholar 

  131. D. W. Yesair, M. Callahan, L. Remington, and C. J. Kensler. Role of the enterohepatic cycle of indomethacin on its metabolism, distribution in tissues and its excretion by rats, dogs and monkeys.Biochem. Pharmacol. 19: 1579–1590 (1970).

    CAS  PubMed  Google Scholar 

  132. W. J. O'Reilly, P. A. Pitt, and A. J. Ryan. Pharmacokinetic model for the successive demethylation and biliary secretion of methyl orange in the rat.Brit. J. Pharmacol. 43: 167–179 (1971).

    Google Scholar 

  133. J. E. Axelson and M. Gibaldi. Absorption and excretion of riboflavin in the rat:An unusual example of nonlinear pharmacokinetics.J. Pharm. Sci. 61: 404–407 (1972).

    CAS  PubMed  Google Scholar 

  134. J. G. Wagner. Kinetics of pharmacologic response. I. Proposed relationships between response and drug concentration in the intact animal and man.J. Theoret. Biol. 20: 173–201 (1968).

    CAS  Google Scholar 

  135. A. R. DiSanto and J. G. Wagner. Kinetics of pharmacologic response. II. Equation for turnover time of goldfish as a function of concentration of ethanol and a theoretical derivation based on a combination of occupation and rate receptor theories.J. Pharm. Sci. 58: 1077–1085 (1969).

    CAS  PubMed  Google Scholar 

  136. M. Gibaldi and G. Levy. Dose-dependent decline of pharmacologic effects of drugs with linear pharmacokinetic characteristics.J. Pharm. Sci. 61: 567–569 (1972).

    CAS  PubMed  Google Scholar 

  137. J. G. Wagner. Relations between drug concentration and response.J. Mondial de Pharmacie 14: 279–310 (1971).

    Google Scholar 

  138. G. Levy and M. Gibaldi. Pharmacokinetics of drug action.Ann. Rev. Pharmacol. 12: 85–98 (1972).

    CAS  PubMed  Google Scholar 

  139. T. Tsuchiya and G. Levy. Relationship between dose and plateau levels of drugs eliminated by parallel first-order and capacity-limited kinetics.J. Pharm. Sci. 61: 541–544 (1972).

    CAS  PubMed  Google Scholar 

  140. E. Krüger-Thiemer. Pharmacokinetics and dose-concentration relationships. In Proceedings of the Third International Pharmacological Meeting, Sao Paulo, 1966, Vol. 7:Physico-Chemical Aspects of Drug Actions, Pergamon Press, New York, 1968, pp. 63–113.

    Google Scholar 

  141. E. Krüger-Thiemer and R. Levine. The solution of pharmacological problems with computers. VIII. Non first-order models of drug metabolism.Arzneim.-Forsch. 18: 1575–1579 (1968).

    Google Scholar 

  142. P. A. Shore, B. B. Brodie, and C. A. M. Hogben. The gastric secretion of drugs; a pH partition hypothesis.J. Pharmacol. Exptl. Therap. 119: 361–369 (1957).

    CAS  Google Scholar 

  143. C. A. M. Hogben, D. J. Tocco, B. B. Brodie, and L. S. Schanker. On the mechanism of intestinal absorption of drugs.J. Pharmacol. Exptl. Therap. 125: 275–282 (1959).

    CAS  Google Scholar 

  144. A. Suzuki, W. I. Higuchi, and N. F. H. Ho. Theoretical model studies of drug absorption and transport in the gastrointestinal tract. II.J. Pharm. Sci. 59: 651–659 (1970)

    CAS  PubMed  Google Scholar 

  145. L. Michaelis and M. L. Menten. Die Kinetic der Invertinwirkung.Biochem. Z. 49: 333–369 (1913).

    CAS  Google Scholar 

  146. A. Goldstein. Saturation of alcohol dehydrogenase by ethanol.New Engl. J. Med. 283: 875 (1970).

    CAS  PubMed  Google Scholar 

  147. J. G. Wagner. A new generalized nonlinear pharmacokinetic model and its implications. InBiopharmaceutics and Relevant Pharmacokinetics, 1st ed., Drug Intelligence Publications, Hamilton, Ill., 1971, Chap. 40, pp. 302–317.

    Google Scholar 

  148. A. R. DiSanto and J. G. Wagner. Potential erroneous assignment of nonlinear data to the classical linear two-compartment open model.J. Pharm. Sci. 61: 552–555 (1972).

    CAS  PubMed  Google Scholar 

  149. M. Rowland and S. Riegelman. Pharmacokinetics of acetylsalicylic acid and salicylic acid after intravenous administration in man.J. Pharm. Sci. 57: 1313–1319 (1968).

    CAS  Google Scholar 

  150. M. Rowland, L. Z. Benet, and S. Riegelman. Two-compartment model for a drug and its metabolite:Application to acetylsalicylic acid pharmacokinetics.J. Pharm. Sci. 59: 364–367 (1970).

    CAS  PubMed  Google Scholar 

  151. J. P. Wagner. Fallacy in concluding there are zero order kinetics from blood level and urinary excretion data.J. Pharm. Sci. 56: 586–594 (1967).

    CAS  PubMed  Google Scholar 

  152. J. G. Wagner. Pharmacokinetics.Ann. Rev. Pharmacol. 8: 67–93 (1968).

    CAS  PubMed  Google Scholar 

  153. B. K. Martin. Potential effects of the plasma proteins on drug distribution.Nature 207: 274–276 (1965).

    CAS  PubMed  Google Scholar 

  154. M. C. Meyer and D. E. Guttman. The binding of drugs by plasma proteins.J. Pharm. Sci. 57: 895–918 (1968).

    CAS  PubMed  Google Scholar 

  155. J. J. Coffey, F. J. Bullock, and P. T. Schoenemann. Numerical solution of nonlinear pharmacokinetic equations; effects of plasma protein binding on drug distribution and elimination.J. Pharm. Sci. 60: 1623–1628 (1971).

    CAS  PubMed  Google Scholar 

  156. S. H. Curry. Theoretical changes in drug distribution resulting from changes in binding to plasma proteins and to tissues.J. Pharm. Pharmacol. 22: 753–757 (1970).

    CAS  PubMed  Google Scholar 

  157. E. Kruger-Thiemer, W. Diller, and P. Bunger. Pharmacokinetic models regarding protein binding of drugs.Antimicrob. Agents Chemotherap. (Wash.), pp. 183–191 (1965, 1966).

  158. E. R. Reeve. The plasma albumin system:A first attempt at a kinetic description in dynamic clinical studies with radioisotopes. In Proceedings of a Symposium, Oak Ridge Institute of Nuclear Studies, 1963, U.S. Department of Commerce, TID 7678, Office of Technical Services, Washington, D.C., 1964, pp. 445–472.

    Google Scholar 

  159. J. M. Thorp. The influence of plasma proteins on the action of drugs. In T. B. Binns (ed.),Absorption and Distribution of Drugs, Williams and Wilkins, Baltimore, 1964, pp. 64–76.

    Google Scholar 

  160. J. R. Gillette. Factors affecting drug metabolism.Ann. N. Y. Acad. Sci. 179: 43–66 (1971).

    CAS  PubMed  Google Scholar 

  161. R. L. Dedrick and K. B. Bischoff. Pharmacokinetics in applications of the artificial kidney.Chem. Engr. Prog. Symp. Ser. 64: 32–44 (1968).

    CAS  Google Scholar 

  162. K. B. Bischoff, R. L. Dedrick, and D. S. Zaharko. Preliminary model for methotrexate pharmacokinetics.J. Pharm. Sci. 59: 149–154 (1970).

    CAS  PubMed  Google Scholar 

  163. A. R. DiSanto. A new nonlinear pharmacokinetic model with specific application to methylene blue. Ph.D. dissertation, University of Michigan, Ann Arbor, 1971.

    Google Scholar 

  164. M. Civen, B. M. Ulrich, B. M. Trimmer, and C. B. Brown. Circadian rhythms of liver enzymes and their relationship to enzyme induction.Science 157: 1563–1564 (1967).

    CAS  PubMed  Google Scholar 

  165. F. M. Radzialowski and W. F. Bousquet. Circadian rhythm in hepatic drug metabolizing activity in the rat.Life Sci. 6: 2545–2548 (1967).

    CAS  PubMed  Google Scholar 

  166. J. J. Burns and A. H. Conney. Enzyme stimulation and inhibition in the metabolism of drugs.Proc. Roy. Soc. Med. 58: 955–960 (1965).

    CAS  PubMed Central  PubMed  Google Scholar 

  167. G. L. Atkins. A versatile digital computer program for non-linear regression analysis.Biochim. Biophys. Acta 252: 405–420 (1971).

    CAS  PubMed  Google Scholar 

  168. G. L. Atkins. Some applications of a digital computer program to estimate biological parameters by non-linear regression analysis.Biochim. Biophys. Acta 252: 421–426 (1971).

    CAS  PubMed  Google Scholar 

  169. J. Buell and R. Kalaba. Quasilinearization and the Fitting of Nonlinear Models of Drug Metabolism to Experimental Kinetic Data, Technical Report USCEE-312, Electronic Sciences Laboratory, University of Southern California, Los Angeles, 1968.

    Google Scholar 

  170. A. J. Sedman and J. G. Wagner. Quantitative pooling of both parallel Michaelis—Menten formation equations and Langmuir-type equations for bindings of drugs to tissues. In Abstracts of Symposia and Contributed Papers Presented to the APhA Academy of Pharmaceutical Sciences at the 119th Annual Meeting of the American Pharmaceutical Association, Houston Texas, 1972, Vol. 2, No. 1, Abst. 16, p. 61.

  171. G. Spears, J. G. T. Sneyd, and E. G. Loten. A method of deriving kinetic constants for two enzymes acting on the same substrate.Biochem. J. 125: 1149–1151 (1971).

    CAS  PubMed Central  PubMed  Google Scholar 

  172. J. L. Neal. Analysis of Michaelis kinetics for two independent saturable membrane transport functions.J. Theoret. Biol. 35: 113–118 (1972).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by Public Health Service Grant 5-P11-GM15559.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, J.G. A modern view of pharmacokinetics. Journal of Pharmacokinetics and Biopharmaceutics 1, 363–401 (1973). https://doi.org/10.1007/BF01059664

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059664

Key words

Navigation