Skip to main content
Log in

Fox function representation of non-debye relaxation processes

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Applying the Liouville-Riemann fractional calculus, we derive and solve a fractional operator relaxation equation. We demonstrate how the exponentΒ of the asymptotic power law decay ∼t −β relates to the orderΝ of the fractional operatord v/dt v (0<Ν<1). Continuous-time random walk (CTRW) models offer a physical interpretation of fractional order equations, and thus we point out a connection between a special type of CTRW and our fractional relaxation model. Exact analytical solutions of the fractional relaxation equation are obtained in terms of Fox functions by using Laplace and Mellin transforms. Apart from fractional relaxation, Fox functions are further used to calculate Fourier integrals of Kohlrausch-Williams-Watts type relaxation functions. Because of its close connection to integral transforms, the rich class of Fox functions forms a suitable framework for discussing slow relaxation phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. W. Barnes,Proc. Lond. Math. Soc. 6:141 (1908).

    Google Scholar 

  2. H. J. Meilin,Math. Ann. 68:305 (1910).

    Google Scholar 

  3. A. L. Dixon and W. L. Ferrar,Q. J. Math. Oxford Ser. 7:81 (1936).

    Google Scholar 

  4. C. Fox,Trans. Am. Math. Soc. 98:395 (1961).

    Google Scholar 

  5. B. L. J. Braaksma,Compos. Math. 15:239 (1964).

    Google Scholar 

  6. A. M. Mathai and R. K. Saxena,The H-Function with Applications in Statistics and Other Disciplines (Wiley Eastern Limited, New Delhi, 1978).

    Google Scholar 

  7. W. R. Schneider, inStochastic Processes in Classical and Quantum Systems, S. Albeverio, G. Casati, and D. Merlini, eds. (Springer, Berlin, 1986).

    Google Scholar 

  8. W. R. Schneider and W. Wyss,J. Math. Phys. 30:134 (1989).

    Google Scholar 

  9. G. Baumann, M. Freyberger, W. G. Glöckle, and T. F. Nonnenmacher,J. Phys. A: Math. Gen. 24:5085 (1991).

    Google Scholar 

  10. I. A. Campbell and C. Giovannella, eds.,Relaxation in Complex Systems and Related Topics (Plenum Press, New York, 1990).

    Google Scholar 

  11. R. L. Bagley and P. J. Torvik,J. Rheol. 27:201 (1983).

    Google Scholar 

  12. R. C. Koeller,J. Appl. Mech. 51:299 (1984).

    Google Scholar 

  13. C. Friedrich,Rheol. Acta 30:151 (1991).

    Google Scholar 

  14. T. F. Nonnenmacher, inRheological Modeling: Thermodynamical and Statistical Approaches, J. Casas-Vázquez and D. Jou, eds. (Springer, Berlin, 1991).

    Google Scholar 

  15. T. F. Nonnenmacher and W. G. Glöckle,Phil. Mag. Lett. 64:89 (1991).

    Google Scholar 

  16. W. G. Glöckle and T. F. Nonnenmacher,Macromolecules 24:6426 (1991).

    Google Scholar 

  17. W. G. Glöckle and T. F. Nonnenmacher, inProceedings of the 3rd International Conference Locarno: Stochastic Processes, Physics and Geometry, to appear.

  18. M. F. Shlesinger,J. Stat. Phys. 36:639 (1984).

    Google Scholar 

  19. A. Blumen, J. Klafter, and G. Zumofen, inOptical Spectroscopy of Glasses, I. Zschokke, ed. (Reidel, Dordrecht, 1986).

    Google Scholar 

  20. W. Wyss,J. Math. Phys. 27:2782 (1986).

    Google Scholar 

  21. T. F. Nonnenmacher and D. J. F. Nonnenmacher,Acta Phys. Hung. 66:145 (1989).

    Google Scholar 

  22. K. B. Oldham and J. Spanier,The Fractional Calculus (Academic Press, New York, 1974).

    Google Scholar 

  23. F. Oberhoettinger,Tables of Mellin Transforms (Springer, Berlin, 1974).

    Google Scholar 

  24. T. F. Nonnenmacher,J. Phys. A: Math. Gen. 23:L697 (1990).

    Google Scholar 

  25. S. H. Glarum,J. Chem. Phys. 33:639 (1960).

    Google Scholar 

  26. E. W. Montroll and G. H. Weiss,J. Math. Phys. 6:167 (1965).

    Google Scholar 

  27. M. F. Shlesinger,J. Stat. Phys. 10:421 (1974).

    Google Scholar 

  28. H. Scher and E. W. Montroll,Phys. Rev. B 12:2455 (1975).

    Google Scholar 

  29. A. Blumen, J. Klafter and G. Zumofen,Phys. Rev. B 27:3429 (1983).

    Google Scholar 

  30. M. F. Shlesinger and E. W. Montroll,Proc. Natl. Acad. Sci. USA 81:1280 (1984).

    Google Scholar 

  31. J. D. Ferry,Viscoelastic Properties of Polymers (Wiley, New York, 1970).

    Google Scholar 

  32. J. T. Bendler,J. Stat. Phys. 34:625 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glöckle, W.G., Nonnenmacher, T.F. Fox function representation of non-debye relaxation processes. J Stat Phys 71, 741–757 (1993). https://doi.org/10.1007/BF01058445

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01058445

Key words

Navigation