Skip to main content
Log in

Models of the temporal dynamics of visual processing

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Single unit recordings of neurons in primary visual cortex have demonstrated complex temporal patterns in the interspike interval return maps when presented with periodic input. Two models are tested to account for these patterns. An integrate-and-fire model is only able to replicate thein vivo data if its synaptic input is a chaotic function of time (such as a time series derived from the sinusoidally driven Duffing equation). Simpler purely periodic inputs are insufficient to replicate the experimental data. A Hodgkin-Huxley ionic model with a periodic input can replicate some of the features of the neural data, however it seems to be lacking as a complete model. These results indicate that thein vivo dynamics are not a result of the intrinsic properties of the neuron, but arise from a chaotic input to the neuron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Chung, S. A. Raymond, and J. Y. Lettvin, Multiple meaning in single visual units,Brain Behav. Evol. 3:72–101 (1970).

    Google Scholar 

  2. M. J. Feigenbaum, Universal behavior in nonlinear systems,Los Alamos Sci. 1:4–27 (1980).

    Google Scholar 

  3. G. L. Gerstein and M. Mandelbrot, Random walk models for the spike activity of a single neuron,Biophys. J. 4:41–68 (1964).

    Google Scholar 

  4. G. L. Gerstein and D. H. Perkel, Mutual temporal relationships among neuronal spike trains. Statistical techniques of display and analysis,Biophys. J. 12:453–473 (1972).

    Google Scholar 

  5. L. Glass, C. Graves, G. A. Petrillo, and M. C. Mackey, Unstable dynamics of a periodically driven oscillator in the presence of noise,J. Theor. Biol. 86:455–475 (1980).

    Google Scholar 

  6. R. Guttman, L. Feldman, and E. Jakobsson, Frequency entrainment of squid axon membrane,J. Membrane Biol. 56:9–18 (1980).

    Google Scholar 

  7. A. L. Hodgkin and A. L. Huxley, A quantitative description of the membrane current and its application to conduction and excitation,J. Physiol. (London)117:500–544 (1952).

    Google Scholar 

  8. A. V. Holden, The response of excitable membranes to a cyclic input,Cybernetics 21:1–7 (1976).

    Google Scholar 

  9. A. Lasota and M. C. Mackey,Probabilistic Properties of Deterministic Systems (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  10. M. C. Mackey and A. Lasota, Noise and statistical periodicity,Physica D 28:143–154 (1987).

    Google Scholar 

  11. V. B. Mountcastle, W. H. Talbot, H. Sakata, and J. Hyvarinen, Cortical neuronal mechanisms in flutter vibration studies in unanesthesized monkey neuron,J. Neurophys. 32:45–84 (1967).

    Google Scholar 

  12. I. Nemoto, S. Miyazaki, M. Saito, and T. Utsunomiya, Behavior of solutions of the Hodgkin-Huxley equations and its relation to properties of mechanoreceptors,Biophys. J. 15:469–479 (1975).

    Google Scholar 

  13. L. M. Optican and B. J. Richmond, Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex,J. Neurophysiol. 57:162–178 (1987).

    PubMed  Google Scholar 

  14. H. Preissl, A. Aertsen, and G. Palm, Are fractal dimensions relevant for the description of neuronal activity? inParallel Processing in Neural Systems and Computers, R. Bosch, ed. (1990), pp. 19–21.

  15. P. E. Rapp, I. D. Zimmerman, A. M. Albano, G. C. Deguzman, and N. N. Greenbaum, Dynamics of spontaneous neural activity in the simian motor cortex: The dimension of chaotic neurons,Phys. Lett. A 110:335–338 (1985).

    Google Scholar 

  16. R. W. Rodieck, N. Y.-S. Kiang, and G. Gerstein, Some quantitative methods for the study of spontaneous activity of single neurons,Biophys. J. 2:351 (1962).

    Google Scholar 

  17. R. Shaw,The Dripping Faucet as a Model Chaotic System (Aerial Press, Santa Cruz, California, 1984).

    Google Scholar 

  18. R. M. Siegel, Non-linear dynamical system theory and primary visual cortical processing,Physica D 42:385–395 (1990).

    Google Scholar 

  19. F. Takens, Detecting strange attractors in turbulence, inGeometry Symposium: Utrecht 1980, D. Rand and L.-S. Young, eds. (Springer, Berlin, 1981).

    Google Scholar 

  20. A. Longtin,j. Stat. Phys. 70:309–327 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegel, R.M., Read, H.L. Models of the temporal dynamics of visual processing. J Stat Phys 70, 297–308 (1993). https://doi.org/10.1007/BF01053969

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053969

Key words

Navigation