Skip to main content
Log in

Activation by nonlinear oscillations and solitonic excitations

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Local excitations in molecular systems are studied taking into account the influence of soft impurities. The dynamics of activation processes (high-energy events) due to nonlinear mechanisms is studied. The following examples of classical macroscopic systems with strong nonlinear interaction are investigated: 1D Toda chains, 1D Morse rings, and 3D systems of hard spheres including impurities. It is shown that solitonlike excitations may lead to the concentration of energy at definite sites (weak springs or soft spheres). The accumulation of energy is mainly due to soliton-fusion effects. In thermal equilibrium an optimum temperature exists, where the thermally averaged potential energy is preferably partitioned to the soft springs embedded into a hard-spring solvent. Further, we show that the effect of thermal energy localization and the temperature dependence also persists for solutions of soft spheres in hard-sphere solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hänggi, P. Talkner, and M. Borkovec,Rev. Mod. Phys. 62:251 (1990).

    Google Scholar 

  2. W. Ebeling and M. Jenssen,Ber. Bunsenges. Phys. Chem. 95:1356 (1991).

    Google Scholar 

  3. P. Hänggi, F. Marchesoni, and P. Sudano,Phys. Rev. Lett. 60:2563 (1988); F. Marchesoni,Ber. Bunsenges. Phys. Chem. 95:1350 (1991);J. Chem. Phys. 95:3738 (1991).

    Google Scholar 

  4. A. S. Davydov,Solitons in Molecular Systems (Reidel, Dordrecht, 1985).

    Google Scholar 

  5. A. C. Scott, inEnergy Transfer Dynamics, T. W. Barrett and H. A. Pohl, eds. (Springer, Berlin, 1987); A. C. Scott,Phys. Rev. A 31:3518 (1985).

    Google Scholar 

  6. S. W. Englanderet al., Proc. Natl. Acad. Sci. USA 77:7222 (1980).

    Google Scholar 

  7. M. Frank-Kamenetskii,Nature 328:108 (1987).

    Google Scholar 

  8. V. Muto, A. C. Scott, and P. L. Christiansen,Phys. Lett. A 136:33 (1989).

    Google Scholar 

  9. W. Ebeling and M. Jenssen, inThe Dynamics of Systems with Chemical Reactions, J. Popielawski, ed. (World Scientific, Singapore, 1989).

    Google Scholar 

  10. W. Ebeling, M. Jenssen, and Yu. M. Romanovskii, inIrreversible Processes and Self-Organization, W. Ebeling and H. Ulbricht, eds. (Teubner, Leipzig, 1989).

    Google Scholar 

  11. M. Peyrard and A. R. Bishop,Phys. Rev. Lett. 62:2755 (1989).

    Google Scholar 

  12. A. Fernandez,J. Phys. A 23:247 (1990).

    Google Scholar 

  13. M. Toda,Theory of Nonlinear Lattices (Springer, Berlin, 1981).

    Google Scholar 

  14. C. Camacho and F. Lund,Physica D 26:379 (1987).

    Google Scholar 

  15. W. Ebeling and M. Jenssen,Physica D 32:183 (1988).

    Google Scholar 

  16. M. Jenssen,Phys. Lett. A 159:6 (1991).

    Google Scholar 

  17. J. J. Birktoft and D. M. Blow,J. Mol. Biol. 68:187 (1972).

    Google Scholar 

  18. Yu. M. Romanovskii, A. Yu. Chikishev, and Yu. I. Khurgin,J. Mol. Cat. 47:235 (1988).

    Google Scholar 

  19. W. Ebeling and M. Jenssen,Physica A 188:350 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebeling, W., Jenssen, M. Activation by nonlinear oscillations and solitonic excitations. J Stat Phys 70, 49–60 (1993). https://doi.org/10.1007/BF01053953

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053953

Key Words

Navigation