Skip to main content
Log in

A numerical study of sparse random matrices

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A numerical study is presented for the eigensolution statistics of largeN×N real and symmetric sparse random matrices as a function of the mean numberp of nonzero elements per row. The model shows classical percolation and quantum localization transitions atp c =1 andp q >1, respectively. In the rigid limitp=N we demonstrate that the averaged density of states follows the Wigner semicircle law and the corresponding nearest energy-level-spacing distribution functionP(S) obeys the Wigner surmise. In the very sparse matrix limitp≪N, withp>p q a singularity 〈ρ(E))∝1/¦E¦ is found as¦E¦→ 0 and exponential tails develop in the high-¦E¦ regions, but theP(S) distribution remains consistent with level repulsion. The localization properties of the model are examined by studying both the eigenvector amplitude and the density fluctuations. The valuep q 1.4 is roughly estimated, in agreement with previous studies of the Anderson transition in dilute Bethe lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Wigner,Ann. Math. 62:548 (1955);65:203 (1957).

    Google Scholar 

  2. F. Dyson,J. Math. Phys. 3:140 (1962);3:1199 (1962).

    Google Scholar 

  3. C. E. Porter,Statistical Theories of Spectra: Fluctuations (Academic Press, New York, 1965).

    Google Scholar 

  4. M. L. Mehta,Random Matrices and the Statistical Theory of Energy Levels (Academic Press, New York, 1967).

    Google Scholar 

  5. E. N. Economou,Green's Functions in Quantum Physics (Springer, New York, 1983).

    Google Scholar 

  6. P. W. Anderson,Phys. Rev. 109:1492 (1958).

    Google Scholar 

  7. D. Staufler,Introduction to Percolation Theory (Taylor and Francis, London, 1985); see also D. Stauffer and A. Aharony,Introduction to Percolation Theory, 2nd ed. (1992).

    Google Scholar 

  8. R. B. Griffiths,Phys. Rev. Lett. 23:17 (1969).

    Google Scholar 

  9. J. R. Banavar, D. Sherrington, and N. Sourlas,J. Phys. A 20:L1 (1987); M. Mezard and G. Parisi,J. Phys. Lett. (Paris)46:L771 (1985).

    Google Scholar 

  10. S. N. Evangelou and E. N. Economou,Phys. Rev. Lett. 68:361 (1992).

    Google Scholar 

  11. G. J. Rodgers and A. J. Bray,Phys. Rev. B 37:3557 (1988).

    Google Scholar 

  12. G. J. Rodgers and C. De Dominicis,J. Phys. A 23:1567 (1990).

    Google Scholar 

  13. A. D. Mirlin and Y. V. Fyodorov,J. Phys. A 24:2273 (1991).

    Google Scholar 

  14. Y. V. Fyodorov and A. D. Mirlin,Phys. Rev. Lett. 67:2049 (1991).

    Google Scholar 

  15. B. L. Al'tshuler, I. Kh. Zharekeshev, S. A. Kotochigova, and B. I. Shklovskii,Sov. Phys. JETP 67:625 (1988).

    Google Scholar 

  16. Y. Imry,Europhysics Lett. 1:249 (1986).

    Google Scholar 

  17. S. N. Evangelou,Phys. Rev. B 39:12895 (1989).

    Google Scholar 

  18. F. Haake,Quantum Signatures of Chaos (Springer, Berlin, 1991).

    Google Scholar 

  19. S. N. Evangelou,Phys. Rev. B 27:1397 (1983).

    Google Scholar 

  20. S. Kirkpatrick and T. P. Eggarter,Phys. Rev. B 6:3598 (1972).

    Google Scholar 

  21. F. Dyson,Phys. Rev. 92:1331 (1953).

    Google Scholar 

  22. S. N. Evangelou,J. Phys. C 19:4291 (1986);J. Condensed Matter 2:2953 (1990).

    Google Scholar 

  23. A. B. Harris,Phys. Rev. B 27:1397 (1985).

    Google Scholar 

  24. S. A. Molcanov,Commun. Math. Phys. 78:429 (1981).

    Google Scholar 

  25. S. N. Evangelou and E. N. Economou,Phys. Lett. A 151:345 (1990).

    Google Scholar 

  26. G. Casati, L. Molinary, and F. Israilev,Phys. Rev. Lett. 64:1851 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evangelou, S.N. A numerical study of sparse random matrices. J Stat Phys 69, 361–383 (1992). https://doi.org/10.1007/BF01053797

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053797

Key words

Navigation