Skip to main content
Log in

Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study Onsager's theory of large, coherent vortices in turbulent flows in the approximation of the point-vortex model for two-dimensional Euler hydrodynamics. In the limit of a large number of point vortices with the energy perpair of vortices held fixed, we prove that the entropy defined from the microcanonical distribution as a function of the (pair-specific) energy has its maximum at a finite value and thereafter decreases, yielding the negative-temperature states predicted by Onsager. We furthermore show that the equilibrium vorticity distribution maximizes an appropriate entropy functional subject to the constraint of fixed energy, and, under regularity assumptions, obeys the Joyce-Montgomery mean-field equation. We also prove that, under appropriate conditions, the vorticity distribution is the same as that for the canonical distribution, a form of equivalence of ensembles. We establish a large-fluctuation theory for the microcanonical distributions, which is based on a level-3 large-deviations theory for exchangeable distributions. We discuss some implications of that property for the ergodicity requirements to justify Onsager's theory, and also the theoretical foundations of a recent extension to continuous vorticity fields by R. Robert and J. Miller. Although the theory of two-dimensional vortices is of primary interest, our proofs actually apply to a very general class of mean-field models with long-range interactions in arbitrary dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Onsager, Statistical hydrodynamics,Nuovo Cimento Suppl. 6:279–289 (1949).

    Google Scholar 

  2. A. S. Monin and A. M. Yaglom,Statistical Fluid Mechanics, Vols. I, II (MIT Press, Cambridge, Massachusetts, 1975).

    Google Scholar 

  3. J. O. Hinze,Turbulence, 2nd ed. (McGraw-Hill, New York, 1975).

    Google Scholar 

  4. A. J. Chorin, Equilibrium statistics of a vortex filament with applications,Commun. Math. Phys. 141:619–631 (1991).

    Google Scholar 

  5. R. H. Kraichnan and D. Montgomery, Two-dimensional turbulence,Rep. Prog. Phys. 43:547–619 (1980).

    Google Scholar 

  6. G. Kirchhoff,Vorlesungen über mathematische Physik (B. G. Teubener, Leipzig, 1877).

    Google Scholar 

  7. C. Marchioro and M. Pulvirenti,Vortex Methods in Two-Dimensional Fluid Dynamics (Springer, Berlin, 1984).

    Google Scholar 

  8. E. A. Overman and N. J. Zabusky, Evolution and merger of isolated vortex structures,Phys. Fluids 25:1297–1305 (1982).

    Google Scholar 

  9. D. Dürr and M. Pulvirenti, On the vortex flow in bounded domains,Commun. Math. Phys. 85:265–273 (1982).

    Google Scholar 

  10. R. H. Kraichnan, Inertial ranges in two-dimensional turbulence,Phys. Fluids 10:1417–1423 (1967).

    Google Scholar 

  11. J. McWilliams, The emergence of isolated coherent vortices in turbulent flow,J. Fluid Mech. 146:21 (1984).

    Google Scholar 

  12. D. S. Deem and N. J. Zabusky, Ergodic boundary in numerical simulations of two-dimensional turbulence,Phys. Rev. Lett. 27:397–381 (1971).

    Google Scholar 

  13. K. M. Khanin, Quasi-periodic motions of vortex systems,Physica D 4:261–269 (1982).

    Google Scholar 

  14. T. S. Lundgren and Y. B. Pointin, Statistical mechanics of two-dimensional vortices,J. Stat. Phys. 17:323–355 (1977).

    Google Scholar 

  15. A. J. Chorin, Turbulence and vortex stretching on a lattice,Commun. Pure Appl. Math. XXXIX:547–565 (1986).

    Google Scholar 

  16. L. van Hove, Quelques propriétés générais de l'intégrale d'un système de particules avec interaction,Physica 15:951–961 (1949).

    Google Scholar 

  17. J. Fröhlich and D. Ruelle, Statistical mechanics of vortices in an in viscid two-dimensional fluid,Commun. Math. Phys. 87:1–36 (1982).

    Google Scholar 

  18. J. Messer and H. Spohn, Statistical mechanics of the isothermal Lane-Emden equation,J. Stat. Phys. 29:561–578 (1982).

    Google Scholar 

  19. E. Caglioti, P. L. Lions, C. Marchioro, and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics approach,Commun. Math. Phys. 143:501–525 (1992).

    Google Scholar 

  20. M. K.-H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions,Commun. Pure Appl. Math. (1992).

  21. D. Montgomery and G. Joyce, Statistical mechanics of “negative temperature” states,Phys. Fluids 17:1139–1145 (1974).

    Google Scholar 

  22. G. Joyce and D. Montgomery, Negative temperature states for the two-dimensional guiding center plasma,J. Plasma Phys. 10:107–121 (1973).

    Google Scholar 

  23. J. Sommeria, C. Staquet, and R. Robert, Final equilibrium state of a two-dimensional shear layer,J. Fluid Mech. 233:661–689 (1991).

    Google Scholar 

  24. D. Montgomery, W. H. Matthaeus, W. T. Stribling, D. Martinez, and S. Oughton, Relaxation in two dimensions and the “sinh-Poisson” equation,Phys. Fluids A 4:3–6 (1992).

    Google Scholar 

  25. J. Miller, Statistical mechanics of Euler equations in two dimensions,Phys. Rev. Lett. 65:2137–2140 (1990).

    Google Scholar 

  26. V. Arnol'd,Mathematical Methods of Classical Mechanics (Springer, New York, 1978).

    Google Scholar 

  27. J. Marsden and A. Weinstein, Coadjoint orbits, vortices and Clebsch variables for incompressible fluids,Physica 7:305–323 (1983).

    Google Scholar 

  28. J. Miller, Statistical mechanics of two-dimensional Euler equations and Jupiter's Great Red Spot, Ph.D. Thesis, California Institute of Technology, Pasadena, California.

  29. R. Robert, A maximum-entropy principle for two-dimensional perfect fluid dynamics,J. Stat. Phys. 65:531–554 (1991).

    Google Scholar 

  30. B. de Finetti, Funzione caratteristica di un fenomeno aleatorio,Atti R. Accad. Naz. Lincei Ser. 6 Mem. Classe Sci. Fis. Mat. Nat. 4:251–300 (1931).

    Google Scholar 

  31. L. Breiman,Probability (Addison-Wesley, Reading, Massachusetts, 1968).

    Google Scholar 

  32. E. Caglioti, Misure invarianti per l'equazione di Eulero bidimensionale. Meccanica statistica per il modello a vortici, Dottorato di Ricerca in Física IV Ciclo, Université di Roma, Rome, Italy.

  33. H.-O. Georgii, Large deviations and maximum entropy principle for interacting random fields on ℤd,Ann. Prob. (1992).

  34. I. Csiszár, Sanov property, generalizedI-projection, and a conditional limit theorem,Ann. Prob. 12:768–793 (1984).

    Google Scholar 

  35. I. Ioffe and V. Tikhomirov, Duality of convex functions and extremum problems,Russ. Math. Surv. 23:53–124 (1968).

    Google Scholar 

  36. P. Groeneboom, J. Oosterhoff, and F. H. Ruymgaart, Large deviation theorems for empirical probability measures,Ann. Prob. 7:553–586 (1979).

    Google Scholar 

  37. P. Marcus, Vortex dynamics in a shearing zonal flow,J. Fluid Mech. 215:393–430 (1990).

    Google Scholar 

  38. J. Miller, P. B. Weichman, and M. C. Cross, Statistical mechanics, Euler's equations, and Jupiter's Red Spot,Phys. Rev. A 45:2328–2359 (1992).

    Google Scholar 

  39. V. Zeitlin, Finite-mode analogs of 2-D ideal hydrodynamics: Coadjoint orbits and local canonical structure,Physica D 49:353–362 (1991).

    Google Scholar 

  40. O. Hald, Convergence of Fourier methods for Navier-Stokes equations,J. Comp. Phys. 40:305–317 (1981).

    Google Scholar 

  41. E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products,Trans. Am. Math. Soc. 80:470–501 (1955).

    Google Scholar 

  42. H.-O. Georgii,Gibbs Measures and Phase Transitions (Walter de Gruyter, Berlin, 1988).

    Google Scholar 

  43. K. R. Parthasarathy,Probability Measures on Metric Spaces (Academic Press, New York, 1967).

    Google Scholar 

  44. E. B. Dynkin, Klassy ekvivalentnyh slučainyh veličin,Uspekhi Mat. Nauk 8:125–134 (1953).

    Google Scholar 

  45. S. R. S. Varadhan,Large Deviations and Applications (Society for Industrial and Applied Mathematics, Philadelphia, 1984).

    Google Scholar 

  46. H. Föllmer, Random fields and diffusion processes, inÉcole d'Été de Probabilités de Saint-Flour XV–XVII, P. L. Hennequin, ed. (Springer, Berlin, 1988).

    Google Scholar 

  47. H. Föllmer and S. Orey, Large deviations for the empirical field of a Gibbs measure,Ann. Prob. 16:961–977 (1988).

    Google Scholar 

  48. R. S. Ellis,Entropy, Large Deviations and Statistical Mechanics (Springer, New York, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eyink, G.L., Spohn, H. Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence. J Stat Phys 70, 833–886 (1993). https://doi.org/10.1007/BF01053597

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053597

Key words

Navigation