Skip to main content
Log in

A maximum entropy mean field method for driven diffusive systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We introduce a method of generating systematic mean field (MF) approximations for the nonequilibrium steady state of ferromagnetic Ising driven diffusive systems (DDS), based on the maximum entropy principle due to Jaynes. In the phase coexistence region, MF approximations to the master equation do not provide a closed system of equations in the MF variables. This can be traced to the conservation of the order parameter by the stochastic dynamics. Our maximum entropy mean field (MEMF) approximation method is applicable to high temperatures as well to the low-temperature phase coexistence region. It is based on a derivation of a generalized variational free energy from the maximum entropy principle, with the MF evolution equations playing the role of constraints. In the phase coexistence region this free energy is nonconvex and is interpreted by means of a Maxwell construction. We use a pair-level variant of the MEMF approximation to calculate quantities of interest for the ferro-magnetic Ising DDS on a square lattice. Results of calculations with several different choices of transition rates satisfying local detailed balance are discussed and compared with those obtained by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Katz, J. L. Lebowitz, and H. Spohn,Phys. Rev. B 28:1655 (1983).

    Google Scholar 

  2. S. Katz, J. L. Lebowitz, and H. Spohn,J. Stat. Phys. 34:497 (1984).

    Google Scholar 

  3. R. J. Glauber,J. Math. Phys. 4:294 (1963).

    Google Scholar 

  4. K. Kawasaki,Phys. Rev. 145:224 (1966).

    Google Scholar 

  5. K. Kawasaki, inPhase Transitions and Critical Phenomena, Vol. 2, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972).

    Google Scholar 

  6. E. T. Jaynes,Phys. Rev. 106:620 (1957).

    Google Scholar 

  7. E. T. Jaynes,Phys. Rev. 108:171 (1957).

    Google Scholar 

  8. E. T. Jaynes, inPapers on Probability, Statistics and Statistical Physics, R. D. Rosenkrantz, ed. (Reidel, Dordrecht, 1983).

    Google Scholar 

  9. W. T. Grandy, Jr.,Foundations of Statistical Mechanics, (Reidel, Dordrecht, 1987).

    Google Scholar 

  10. C. R. Smith and W. T. Grandy, Jr., eds.Maximum-Entropy and Bayesian Methods in Inverse Problems (Reidel, Dordrecht, 1985).

    Google Scholar 

  11. R. Dickman,Phys. Rev. A 38:2588 (1989).

    Google Scholar 

  12. R. G. Bowers and A. McKerrel,Am. J. Phys. 46:138 (1978).

    Google Scholar 

  13. J. Krug, J. L. Lebowitz, H. Spohn, and M. Q. Zhang,J. Stat. Phys. 44:535 (1986).

    Google Scholar 

  14. J. Marro, J. L. Lebowitz, H. Spohn, and M. H. Kalos,J. Stat. Phys. 38:725 (1985).

    Google Scholar 

  15. J. L. Valles and J. Marro,J. Stat. Phys. 49:89 (1987).

    Google Scholar 

  16. K. Leung and J. L. Cardy,J. Stat. Phys. 44:567 (1986).

    Google Scholar 

  17. H. K. Janssen and B. Schmittmann,Z. Phys. B 64:503 (1986).

    Google Scholar 

  18. J. L. Valles and J. Marro,J. Stat. Phys. 43:441 (1986).

    Google Scholar 

  19. J. Marro, J. L. Valles, and J. M. Gonzales-Miranda,Phys. Rev. B 35:3372 (1987).

    Google Scholar 

  20. K. T. Leung,Phys. Rev. Lett. 66:453 (1991).

    Google Scholar 

  21. H. van Beijeren and L. S. Schulman,Phys. Rev. Lett. 53:806 (1984).

    Google Scholar 

  22. R. Dickman,Phys. Rev. A 41:2192 (1990).

    Google Scholar 

  23. P. L. Garrido, J. Marro, and R. Dickman,Ann. Phys. 199:366 (1990).

    Google Scholar 

  24. B. Schmittmann,Int. J. Mod. Phys. B 4:2269 (1990).

    Google Scholar 

  25. R. Kikuchi,Phys. Rev. 81:988 (1951).

    Google Scholar 

  26. T. Morita,J. Phys. Soc. Jpn. 12:753 (1957).

    Google Scholar 

  27. N. G. van Kampen, inAdvances in Chemical Physics, Vol. 34, I. Prigogine and S. A. Rice, eds. (Wiley, New York, 1976), p. 245.

    Google Scholar 

  28. C. M. van Baal,Physica A 111:591 (1982).

    Google Scholar 

  29. I. I. Kidin and M. A. Shtremel,Fiz. Metal. Metalloved. 11:641 (1961).

    Google Scholar 

  30. N. Pesheva, Derivation of the macroscopic rate equations for DDS at pair level of approximation, to be published.

  31. I. Procaccia and J. Ross,J. Chem. Phys. 67:5558 (1977).

    Google Scholar 

  32. I. Procaccia, Y. Shimoni, and R. D. Levine,J. Chem. Phys. 65:3284 (1976).

    Google Scholar 

  33. I. Procaccia and R. D. Levine,J. Chem. Phys. 65:3357 (1976).

    Google Scholar 

  34. M. Suzuki,J. Phys. Soc. Jpn. 55:4205 (1986).

    Google Scholar 

  35. M. Suzuki, M. Katori, and X. Hu,J. Phys. Soc. Jpn. 56:3092 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pesheva, N.C., Shnidman, Y. & Zia, R.K.P. A maximum entropy mean field method for driven diffusive systems. J Stat Phys 70, 737–771 (1993). https://doi.org/10.1007/BF01053593

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053593

Key words

Navigation