Skip to main content
Log in

Cellular automata approach to site percolation on ℤ2. A numerical study

  • Short Communications
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a cellular automata model as a new approach to Bernoulli site percolation on the square lattice. A new macroscopic quantity is defined and numerically computed at each level step of the automata dynamics. Its limit manifests a critical behavior at a value of the site occupancy probability quite close to those obtained for site percolation on ℤ2 with the best-known numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. von Neumann, inTheory of Self Reproducing Automata, A. W. Burks, ed. (University of Illinois Press, Champaign, Illinois, 1966); S. Ulam, Random processes and transformations, inProceedings of the International Congress on Mathematics (1952), Vol. 2, pp. 264–275.

    Google Scholar 

  2. U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice gas automata for the Navier-Stokes equation,Phys. Rev. Lett. 56:1505 (1986); B. Boghosian and D. Levermore, A cellular automaton for Burger's equation,Complex Syst. 1:17–30 (1987).

    Google Scholar 

  3. S. Wolfram, Universality and complexity in cellular automata,Physica D 10:1–35 (1984).

    Google Scholar 

  4. E. Domany and W. Kinzel, Equivalence of cellular automata to Ising models and directed percolation,Phys. Rev. Lett. 53:311 (1984).

    Google Scholar 

  5. S. R. Broadbent and J. M., 1966); S. Ulam, Random processes and transformations, inProceedings of the International Congress on Mathematics (1952), Vol. 2, pp. 264–275.

  6. G. R. Grimmett,Percolation (Springer, Berlin, 1989).

    Google Scholar 

  7. H. Kesten, The critical probability of bond percolation on the square lattice equals 1/2,Commun. Math. Phys. 74:41–59 (1980).

    Google Scholar 

  8. H. Kesten,Percolation Theory for Mathematicians (Birkhauser, Basel, 1982).

    Google Scholar 

  9. M. V. Men'shikov and K. D. Pelikh, Percolation with several defect types. An estimate of critical probability for a square lattice,Mat. Zametki 46(4):38–47 (1949).

    Google Scholar 

  10. M. Fisher and J. W. Essam, Some cluster sizes and percolation problems,J. Math. Phys. 2:609–619 (1961).

    Google Scholar 

  11. B. Mandelbrot,The Fractal Geometry of Nature (Freeman, New York, 1983).

    Google Scholar 

  12. J. T. Chayes and L. Chayes, The large N-limit of the threshold value in Mandelbrot's fractal percolation process,J. Phys. A Math. Gen. 22:L501 (1989).

    Google Scholar 

  13. P. J. Reynolds, H. E. Stanley, and W. Klein, Large cell Monte Carlo renormalization group for percolation,Phys. Rev. B 21:1223–1245 (1980).

    Google Scholar 

  14. D. Stauffer, Scaling theory for percolation clusters,Phys. Rep. 54:1–74 (1979).

    Google Scholar 

  15. T. Gibele,J. Phys. A Math. Gen. 17:L51 (1984).

    Google Scholar 

  16. B. Derrida and H. Saleur, A combination of Monte Carlo and transfer matrix method to study 2D and 3D percolation,J. Phys. (Paris)46:1043–1057 (1985).

    Google Scholar 

  17. K. J. Falconer and G. R. Grimmett, The critical point of fractal percolation in three and more dimensions,J. Phys. A Math. Gen. 24:L491 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchard, P., Gandolfo, D. Cellular automata approach to site percolation on ℤ2. A numerical study. J Stat Phys 73, 399–408 (1993). https://doi.org/10.1007/BF01052768

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01052768

Key words

Navigation