Skip to main content
Log in

Finite-size dependence of the helicity modulus within the mean spherical model

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The validity of the finite-size scaling prediction about the existence of logarithmic corrections in the helicity modulusγ of three-dimensional O(n)-symmetric order parameter systems in confined geometries is studied for the three-dimensional mean spherical model of geometryL 3/s-d×∞d′, 0⩽d′<3. For a fully finite geometry the general case ofd p⩾0 periodic,d a⩾0 antiperiodic,d 0⩾0 free, andd 1⩾0 fixed (d p+da+d0+d1=d, d=3) boundary conditions is considered, whereas for film (d′=2) and cylinder (d′=1) geometries only the case of antiperiodic and/or periodic boundary conditions is investigated. The corresponding expressions for the finite-size scaling function of the helicity modulus and its asymptotics in the vicinity, below, and above the bulk critical temperatureT c and the shifted critical temperatureT c,L are derived. The obtained results are not in agreement with the hypothesis of the existence of a log(L) correction term to the finite-size behavior of the helicity modulus in the finite-size critical region if d=3. In the case of film and cylinder geometries there are no logarithmic corrections. In the case of a fully finite geometry a universal logarithmic correction term −[(d 0d 1)/4π−2da−12] lnL/L is obtained only for (T c-T) L≫lnL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Privman and M. E. Fisher,Phys. Rev. B 30:322 (1984).

    Google Scholar 

  2. V. Privman,Phys. Rev. B 38:9261 (1988).

    Google Scholar 

  3. V. Privman, inFinite Size Scaling and Numerical Simulation of Statistical Systems, V. Privman, ed. (World Scientific, Singapore, 1990).

    Google Scholar 

  4. V. Privman,Physica A 177:241 (1991).

    Google Scholar 

  5. J. L. Cardy and I. Peschel,Nucl. Phys. B 300[FS22]:377 (1988).

    Google Scholar 

  6. M. P. Gelfand and M. E. Fisher,Int. J. Thermophys. 9:713 (1988).

    Google Scholar 

  7. M. P. Gelfand and M. E. Fisher,Physica A 166:1 (1990).

    Google Scholar 

  8. J. G. Brankov and V. B. Priezzhev,J. Phys. A 25:4297 (1992).

    Google Scholar 

  9. J. G. Brankov and D. M. Danchev,J. Phys. A, submitted.

  10. J. G. Brankov and D. M. Danchev,J. Stat. Phys. 71:775 (1993).

    Google Scholar 

  11. V. Privman,J. Phys. A 23:L711 (1990).

    Google Scholar 

  12. M. E. Fisher, M. N. Barber, and D. Jasnow,Phys. Rev. A 8:111 (1973).

    Google Scholar 

  13. I. Rhee, F. M. Gasparini, and D. J. Bishop,Phys. Rev. Lett. 63:410 (1989).

    Google Scholar 

  14. F. M. Gasparini and I. Rhee, inProgress in Low Temperature Physics, Vol. 6, D. F. Brewer, ed. (North-Holland, Amsterdam, 1991), Chapter I.

    Google Scholar 

  15. M. N. Barber and M. E. Fisher,Ann. Phys. (N.Y.)77:1 (1973).

    Google Scholar 

  16. M. N. Barber,J. Phys. A 10:1335 (1977).

    Google Scholar 

  17. G. S. Joyce, inPhase Transitions and Critical Phenomena, Vol. 2, C. Domb and M. S. Green, eds. (Academic Press, London, 1972), pp. 375–492.

    Google Scholar 

  18. J. Shapiro and J. Rudnick,J. Stat. Phys. 43:51 (1986).

    Google Scholar 

  19. I. S. Gradshteyn and I. M. Ryzhik,Tablof Integrals, Series, and Products (Academic Press, New York, 1973).

    Google Scholar 

  20. S. Singh and R. K. Pathria,Phys. Rev. B 31:4483 (1985).

    Google Scholar 

  21. M. N. Barber,J. Stat. Phys. 10:59 (1974).

    Google Scholar 

  22. S. Singh and R. K. Pathria,Phys. Rev. B 32:4619 (1985).

    Google Scholar 

  23. M. N. Barber, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1983), pp. 144–265.

    Google Scholar 

  24. H. E. Stanley,Phys. Rev. 176:718 (1968).

    Google Scholar 

  25. M. Kac and C. J. Thompson,Phys. Norveg. 5:163 (1971).

    Google Scholar 

  26. H. J. F. Knops,J. Math. Phys. 14:1918 (1973).

    Google Scholar 

  27. K. Binder, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1983), pp. 1–143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danchev, D. Finite-size dependence of the helicity modulus within the mean spherical model. J Stat Phys 73, 267–292 (1993). https://doi.org/10.1007/BF01052761

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01052761

Key words

Navigation