Skip to main content
Log in

Langevin dynamic simulation of hysteresis in a field-swept Landau potential

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Numerical simulations are done of Langevin dynamics for a uniform-orderparameter, field-swept Landau model,Φ= −|a/2|m 2+|b/4|m 4mh(t) , to study hysteresis effects. The field is swept at a constant rateh(t)=h(0)+ht. The stochastic jump values of the field {hJ from an initially prepared metastable minimumm(0) are recorded, on passage to a global minimum m(τ). The results are: (a) The mean jump¯h J(h) increases (hysteresis loop widens) with h, confirming a previous theoretical criterion based on rate competition between field-sweep and inverse mean first-passage time 〈τ〉 (FPT); (b) The broad jump distributionρ(h J,h) is related to intrinsically large FPT fluctuations (〈τ 2〉−〈τ2)/〈τ 2〉 ∼ O(1), and can be quantitatively understood. Possible experimental tests of the ideas are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chikazumi,Physics of Magnetism (Wiley, New York, 1964).

    Google Scholar 

  2. M. Avrami,J. Chem. Phys. 7:1103 (1939).

    Google Scholar 

  3. D. R. Uhlman,J. Non-cryst. Solids 7:337 (1972).

    Google Scholar 

  4. E. G. Gage and L. Mandel,J. Opt. Soc. Am. B 6:287 (1989).

    Google Scholar 

  5. J. A. Barker, D. E. Schreiber, B. G. Huth, and D. H. Everett,Proc. R. Soc. Lond. A 386:251 (1983).

    Google Scholar 

  6. W. F. Brown,J. Appl. Phys. 33:1308 (1962).

    Google Scholar 

  7. E. P. Wohlfarth,J. Appl. Phys. 35:783 (1964).

    Google Scholar 

  8. I. D. Mayergoyz,Phys. Rev. Lett. 56:1518 (1986).

    Google Scholar 

  9. G. F. Mazenko and M. Zannetti,Phys. Rev. B 32:4565 (1985).

    Google Scholar 

  10. M. Rao, H. R. Krishnamurthy, and R. Pandit,Phys. Rev. B 42:856 (1990).

    Google Scholar 

  11. V. P. Skriprov and A. V. Skiprov,Sov. Phys. Usp. 22:389 (1979).

    Google Scholar 

  12. R. Gilmore,Phys. Rev. A 20:2510 (1979).

    Google Scholar 

  13. D. Kumar, inProceedings of the Winter School in Stochastic Processes, Hyderabad, 1982 (Springer, Berlin 1983), p. 186.

    Google Scholar 

  14. C. P. Bean,J. Appl. Phys. 26:1381 (1955).

    Google Scholar 

  15. G. S. Agarwal and S. R. Shenoy,Phys. Rev. A 23:2719 (1981).

    Google Scholar 

  16. S. R. Shenoy and G. S. Agarwal,Phys. Rev. A 28:1315 (1984).

    Google Scholar 

  17. A. Simon and A. Libchaber,Phys. Rev. Lett. 68:3375 (1992).

    Google Scholar 

  18. M. C. Mahato and S. R. Shenoy, in Proceedings of International Workshop on Statistical Physics of Solids and Glasses, Calcutta, December, 1991,Physica A 186:220 (1992).

    Google Scholar 

  19. M. Acharyya, B. K. Chakrabarti and A. K. Sen,Physica A 186:231 (1992); W. S. Lo and R. A. Pelcorits,Phys. Rev. A 42:7471 (1990).

    Google Scholar 

  20. R. Stratonovich,Topics in the Theory of Random Noise, (Gordon and Breach, New York, 1963), Vol. 1, Chapter 4.

    Google Scholar 

  21. H. A. Kramers,Physica C 7:284 (1940).

    Google Scholar 

  22. K. Binder,Rep. Prog. Phys. 50:783 (1987).

    Google Scholar 

  23. W. Paul, D. W. Heermann, and K. Binder,J. Phys. A 22:3325 (1989).

    Google Scholar 

  24. S. Sengupta, Y. J. Marathe, and S. Puri,Phys. Rev. B 45:7828 (1992).

    Google Scholar 

  25. D. Dhar and P. B. Thomas,J. Phys. A 25:4967 (1990);Europhys. Lett. 21:965 (1993).

    Google Scholar 

  26. P. Jung, G. Gray, R. Roy, and P. Mandel,Phys. Rev. Lett. 65:1873 (1990).

    Google Scholar 

  27. Z. Schuss and B. J. Matkowsky,SIAM J. Appl. Math. 35:604 (1979); Z. Schuss,SIAM J. Rev. 22:119 (1980).

    Google Scholar 

  28. K. P. N. Murthy and S. R. Shenoy,Phys. Rev. A 36:5087 (1987).

    Google Scholar 

  29. R. Roy, R. Short, J. Durnin, and L. Mandel,Phys. Rev. Lett. 45:1486 (1980).

    Google Scholar 

  30. T. V. Ramakrishnan and M. Yussouff,Phys. Rev. B 19:2775 (1979); A. D. J. Haymet and D. W. Oxtoby,J. Chem. Phys. 74:2559 (1981); C. Dasgupta, unpublished.

    Google Scholar 

  31. F. Moss and P. V. E. McClintock, eds.,Noise in Nonlinear Dynamical Systems (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  32. B. Chattopadhyay, M. C. Mahato, and S. R. Shenoy, unpublished.

  33. P. Jung and P. Hanggi,Phys. Rev. A 44:8033 (1991);Europhys. Lett. 8:505 (1989), and references therein.

    Google Scholar 

  34. D. W. Heermann,Computer Simulation Methods in Theoretical Physics (Springer-Verlag, Berlin, 1986).

    Google Scholar 

  35. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical Recipes (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  36. M. Suzuki,Adv. Chem. Phys. 46:195 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahato, M.C., Shenoy, S.R. Langevin dynamic simulation of hysteresis in a field-swept Landau potential. J Stat Phys 73, 123–145 (1993). https://doi.org/10.1007/BF01052753

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01052753

Key words

Navigation