Skip to main content
Log in

Asymptotic theory of multidimensional chaos

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A delay-differential equationɛu(t)+u(t)=f(u(t−1)), 0⩽t < ∞, and its generalization are investigated in the limitɛ → 0, when the attractor's dimension increases infinitely. It is shown that a number of statistical characteristics are asymptotically independent ofɛ. As for the attractor, it can be regarded as a direct product ofO(1/ɛ) equivalent “subattractors,” their statistical characteristics being asymptotically independent of ɛ. The results enable one to predict some characteristics of the attractor with fractal dimensionD ≫ 1 for the caseɛ ≪ 1, when they are inaccessible numerically. The approach developed seems to be applicable for a wide class of spatiotemporal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Farmer, Chaotic attractors of infinite-dimensional systems,Physica 4D:366–392 (1982).

    Google Scholar 

  2. K. Ikeda and K. Matsumoto, High-dimensional chaotic behavior in systems with delayed feedback,Physica 29D:223–236 (1987).

    Google Scholar 

  3. K. Ikeda, K. Kondo, and O. Akimoto, Successive higher-harmonic bifurcations in systems with delayed feedback,Phys. Rev. Lett. 49:1467–1470 (1982).

    Google Scholar 

  4. K. Ikeda and K. Matsumoto, Study of a high dimensional chaotic attractor,J. Stat. Phys. 44:955–982 (1986).

    Google Scholar 

  5. F. A. Hopf, D. L. Kaplan,et al., Bifurcations to chaos in optical bistability,Phys. Rev. 25a:2172–2183 (1982).

    Google Scholar 

  6. B. Dorrizi, B. Grammaticos, M. Berre, Y. Pomeau, E. Ressayre, and A. Tallet, Statistics and dimension of chaos in differential delay systems,Phys. Rev. 35a:328–339 (1987).

    Google Scholar 

  7. A. N. Sharkovsky, Yu. L. Maistrenko, and E. Yu. Romanenko,Difference Equations and Their Applications (1986) [in Russian],

  8. J. Mallet-Parret and R. Nussbaum, A bifurcation gap for a singularly perturbed delay equation, inChaotic Dynamics and Fractals (1986).

  9. J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors,Rev. Mod. Phys. 57:617–656 (1985).

    Google Scholar 

  10. R. Shaw, Strange attractors, chaotic behavior and information flow,Z. Naturforsch. 36a:80–112 (1981).

    Google Scholar 

  11. H.-G. Schuster,Deterministic Chaos (Physik Verlag, Weiheim, 1984).

    Google Scholar 

  12. S. V. Ershov and G. G. Malinetsky, On the solution of the direct and inverse problem for the Frobenius-Perron equation, IAM preprint # 166 (1988) [in Russian].

  13. H. Haken and G. Mayer-Kress, Influence of noise on the logistic model,J. Stat. Phys. 26:149–171 (1981).

    Google Scholar 

  14. J. L. Doob,Stochastic Processes (1953).

  15. J. I. Kifer, On small random perturbations of some smooth dynamical systems,Math. USSR Izv. 8:1083 (1974).

    Google Scholar 

  16. K. Kaneko, Pattern dynamics in spatio-temporal chaos,Physica 34D:1–41 (1989).

    Google Scholar 

  17. A. S. Pikovsky, Spatial development of chaos in nonlinear media,Phys. Lett. A 137:121–127 (1989).

    Google Scholar 

  18. R. J. Deissler, Noise-sustained structure, intermittency and the Ginzburg-Landau equation,J. Stat. Phys. 40:371–395 (1988).

    Google Scholar 

  19. R. J. Deissler, External noise and the origin and dynamics of structure in convectively unstable systems,J. Stat. Phys. 54:1458–1488 (1989).

    Google Scholar 

  20. H. Daido, Coupling sensitivity of chaos: Theory and further numerical evidence,Phys. Lett. A 121A:60–66 (1988).

    Google Scholar 

  21. J. P. Crutchfield and K. Kaneko, Are attractors relevant to turbulence?Phys. Rev. Lett. 60:2715–2718 (1988).

    Google Scholar 

  22. S. V. Ershov and A. B. Potapov, On the nature of nonchaotic turbulence, IAM preprint #7 (1991) [in Russian];Phys. Lett. A, submitted.

  23. C. Grebogi, E. Ott, and J. A. Yorke, Crises, sudden changes in chaotic attractors and transient chaos,Physica 7D:181–200 (1983).

    Google Scholar 

  24. T. Schreiber, Spatio-temporal structure in coupled map lattices: Two-point correlations versus mutual information,J. Phys. A 23A:L393–398 (1990).

    Google Scholar 

  25. F. Hofbauer and G. Keller, Ergodic properties of invariant measures of piecewise monotonic transformations,Math. Z. 180:119–140 (1980).

    Google Scholar 

  26. V. L. Volevich, Kinetics of coupled map lattices,Nonlinearity 4:37–48 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ershov, S.V. Asymptotic theory of multidimensional chaos. J Stat Phys 69, 781–812 (1992). https://doi.org/10.1007/BF01050434

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01050434

Key words

Navigation