Skip to main content
Log in

Long-Time tails in a random diffusion model

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Letw = {w(x)∶x∃Zd} be a positive random field with i.i.d. distributionΜ. Given its realization, letX t be the position at timet of a particle starting at the origin and performing a simple random walk with jump rate w−1(Xt). The processX={X t:t⩾0} combined withw on a common probability space is an example of random walk in random environment. We consider the quantitiesΔ t =(d/dt) E μ (X 2 t M −1 t andδ t(w) = (d/dt)Ew(X 2t − M 1t). Here Ew. is expectation overX at fixedw and EΜ = ∫ Ew Μ(dw) is the expectation over bothX andw. We prove the following long-time tail results: (1) limt→∞ td/2δt= V2Md/2−3(d/2π)d/2 and (2) limt → ∞ td/4 δ st(w)= Zs weakly in path space, with {Zs:s>0} the Gaussian process with EZs=0 and EZrZs= V2Md/2−4(dπ)d/2 (r + s)−d/2. HereM and V2 are the mean and variance of w(0) under Μ. The main surprise is that fixingw changes the power of the long-time tail fromd/2 tod/4. Since\(\Delta _t = ME_{\mu _0 } ([w^{ - 1} (X_0 ) - M^{ - 1} ][w^{ - 1} (X_t ) - M^{ - 1} ])\), withΜ 0 the stationary measure for the environment process, our result (1) exhibits a long-time tail in an equilibrium autocorrelation function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. H. Bingham, C. M. Goldie, and J. L. Teugels,Regular Variation (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  2. J. Bricmont and A. Kupiainen, Renormalization group for diffusion in a random medium,Phys. Rev. Lett. 66:1689–1692 (1991).

    Google Scholar 

  3. F. den Hollander, J. Naudts, and P. Scheunders, A long time tail for random walk in random scenery,J. Stat. Phys. 66:1527–1555 (1992).

    Google Scholar 

  4. A. De Masi, P. A. Ferrari, S. Goldstein, and D, W. Wick, An invariance principle for reversible Markov processes. Applications to random motions in random environments,J. Stat. Phys. 55:787–855 (1989).

    Google Scholar 

  5. P. Denteneer and M. H. Ernst, Diffusion in systems with static disorder,Phys. Rev. B 29:1755 (1984).

    Google Scholar 

  6. K. Golden and S. Goldstein, Arbitrary slow decay of correlations in quasiperiodic systems,J. Stat. Phys. 52:1113–1118 (1988).

    Google Scholar 

  7. K. Golden, S. Goldstein, and J. L. Lebowitz, Nash estimates and the asymptotic behavior of diffusions,Ann. Prob. 16:1127–1146 (1988).

    Google Scholar 

  8. T. Hida,Brownian Motion (Springer, Berlin, 1980).

    Google Scholar 

  9. T. M. Liggett,Interacting Particle Systems (Springer, Berlin, 1985).

    Google Scholar 

  10. F. Spitzer,Principles of Random Walk, 2nd ed. (Springer, New York, 1976).

    Google Scholar 

  11. H. Spohn,Large Scale Dynamics of Interacting Particle Systems. Part B: Stochastic Lattice Gases (Springer, Berlin, 1991).

    Google Scholar 

  12. H. van Beijeren and H. Spohn, Transport properties of the one dimensional stochastic Lorentz model. I. Velocity autocorrelation,J. Stat. Phys. 31:231–254 (1983).

    Google Scholar 

  13. H. van Beijeren, Transport properties of stochastic Lorentz models,Rev. Mod. Phys. 54:195–234 (1982).

    Google Scholar 

  14. D. V. Widder,The Laplace Transform (Princeton University Press, Princeton, New Jersey, 1941).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

den Hollander, F., Naudts, J. & Redig, F. Long-Time tails in a random diffusion model. J Stat Phys 69, 731–762 (1992). https://doi.org/10.1007/BF01050432

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01050432

Key words

Navigation