Skip to main content
Log in

The critical behavior of dimer-dimer surface reaction models. Monte Carlo and finite-size scaling investigation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Two models based upon the well-known mechanism for the oxidation of hydrogen on transition metal surfaces, which may also apply to generic dimerdimer surface reaction processes of the type (1/2) A2+B2→B2A, are proposed and studied on the square lattice of sideL (L ⩽ 600) by means of Monte Carlo simulations and finite-size analysis. Both models exhibit irreversible (kinetic) phase transitions (IPT) from a reactive state with sustained production of B2A molecules to off-equilibrium surface poisoned states with the reactants, i.e., without production. The location of the critical points at which the IPTs take place in theL=∞ limit is determined by means of a finite-size scaling analysis. Also, it is shown that at criticality some relevant quantities, such as the rate of B2A production and the coverage with the reactants, exhibit simple power-law behavior, which allow us to determine the corresponding critical exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Anderson and P. T. Dawson, eds.,Experimental Methods in Catalytic Research (Academic Press, New York, 1976).

    Google Scholar 

  2. C. H. Wu and E. W. Montroll,J. Stat. Phys. 30:537 (1983).

    Google Scholar 

  3. L. W. Anacker, R. Kopelman, and J. S. Whitehouse,J. Stat. Phys. 36:591 (1984); M. Silverberg and A. Ben-Shaul,J. Stat. Phys. 52:1179 (1988).

    Google Scholar 

  4. R. M. Ziff and K. Fichthron,Phys. Rev. B Rapid Commun. 34:2038 (1986).

    Google Scholar 

  5. A. Sadiq and K. Yaldram,J. Phys. A Math. Gen. 21:L207 (1988).

    Google Scholar 

  6. K. Fichthron, E. Gulari, and R. M. Ziff,Phys. Rev. Lett. 63:1527 (1989).

    Google Scholar 

  7. K. Fichthron, E. Gulari, and R. M. Ziff,Chem. Ing. Sci. 44:1403 (1989).

    Google Scholar 

  8. M. A. Khan and K. Yaldram,Surface Sci. 219:445 (1989).

    Google Scholar 

  9. D. ben-Avraham, S. Redner, D. Considine, and P. Meakin,J. Phys. A Math. Gen. 23:L613 (1990).

    Google Scholar 

  10. D. ben-Avraham, D. Considine, P. Meakin, S. Redner, and H. Takayasu,J. Phys. A Math. Gen. 23:4297 (1990).

    Google Scholar 

  11. R. M. Ziff, E. Gulari, and Y. Barshad,Phys. Rev. Lett. 56:2553 (1986).

    Google Scholar 

  12. R. Dickman,Phys. Rev. A 34:4246 (1986).

    Google Scholar 

  13. P. Meakin and D. J. Scalapino,J. Chem. Phys. 87:731 (1987).

    Google Scholar 

  14. B. Chopard and M. Droz,J. Phys. A Math. Gen. 21:205 (1988).

    Google Scholar 

  15. K. Yaldran and A. Sadiq,J. Phys. A Math. Gen. 22:1925 (1989).

    Google Scholar 

  16. P. Fisher and U. M. Titulaer,Surface Sci. 221:409 (1989).

    Google Scholar 

  17. M. Ehsasi, M. Matloch, O. Frank, J. H. Bloch, K. Chrismann, F. S. Rys, and W. Hirschwald,J. Chem. Phys. 91:4949 (1989).

    Google Scholar 

  18. H. P. Kaukonen and R. M. Nieminen,J. Chem. Phys. 91:4380 (1989).

    Google Scholar 

  19. I. Jensen and H. C. Fogedby,Phys. Rev. A 42:1969 (1990).

    Google Scholar 

  20. D. Considine, H. Takayasu, and S. Redner,J. Phys. A Math. Gen. 23:L1181 (1990).

    Google Scholar 

  21. M. Dumont, P. Dufour, B. Sente, and R. Dagonnier,J. Catalysis 122:95 (1990).

    Google Scholar 

  22. E. V. Albano,J. Phys. A Math. Gen. 23:L545 (1990).

    Google Scholar 

  23. E. V. Albano,Phys. Rev. B Rapid Commun. 42:10818 (1990).

    Google Scholar 

  24. E. V. Albano,Surface Sci. 235:351 (1990).

    Google Scholar 

  25. E. V. Albano,J. Chem. Phys. 94:1499 (1991).

    Google Scholar 

  26. J. W. Evans and M. S. Miesch,Phys. Rev. Lett. 66:833 (1991).

    Google Scholar 

  27. J. W. Evans and M. S. Miesch,Surface Sci. 245:401 (1991).

    Google Scholar 

  28. E. V. Albano, to be published.

  29. M. Faraday,Experimental Researches in Electricity (London, 1844).

  30. P. R. Norton, inChemical Physics of Solid Surfaces and Heterogeneous Catalysis, Vol. 4, D. A. King and D. P. Wooddruff, eds. (Elsevier, Amsterdam, 1982), p. 27.

    Google Scholar 

  31. B. E. Nieuwenhys,Surface Sci. 126:307 (1983).

    Google Scholar 

  32. B. Helling, B. Kasemo, S. Ljungström, A. Rosén, and T. Wahnström,Surface Sci. 189/90:851 (1987).

    Google Scholar 

  33. S. Ljungström, B. Kasemo, A. Rosén, T. Wahnström, and E. Fridell,Surface Sci. 216:63 (1989).

    Google Scholar 

  34. T. Wahnström, E. Fridell, S. Ljungström, B. Helling, B. Kasemo, and A. Rosén,Surface Sci. 223:L905 (1989).

    Google Scholar 

  35. H. Yang and J. L. Whitten,Surface Sci. 223:131 (1989).

    Google Scholar 

  36. E. V. Albano,J. Phys. A Math. Gen. 25:2557 (1992).

    Google Scholar 

  37. E. V. Albano,Appl. Phys. A (1992), in press.

  38. J. W. Evans,Langmuir 7:2514 (1991).

    Google Scholar 

  39. G. Jones and M. Goldsmith, inProgramming in OCCAM 2, C. A. R. Hoare, ed. (Prentice-Hall International, London, 1988).

    Google Scholar 

  40. W. Paul, D. W. Heermann, and R. C. Desai,J. Comp. Phys. 82:489 (1989).

    Google Scholar 

  41. E. V. Albano, K. Binder, D. Heermann, and W. Paul,J. Stat. Phys. 61:161 (1990).

    Google Scholar 

  42. J. W. Evans, D. R. Burgess, and D. K. Hoffman,J. Chem. Phys. 79:5011 (1983).

    Google Scholar 

  43. J. W. Evans and R. S. Nord,Phys. Rev. B 31:1759 (1985); R. S. Nord and J. W. Evans,J. Chem. Phys. 93:8397 (1990).

    Google Scholar 

  44. K. Binder, ed.,Monte Carlo Methods in Statistical Physics (Springer, Berlin, 1979).

    Google Scholar 

  45. H. O. Mártin, E. V. Albano, and A. Maltz,J. Phys. A Math. Gen. 20:1531 (1987).

    Google Scholar 

  46. E. V. Albano and H. O. Mártin,Thin Solid Films 151:121 (1987).

    Google Scholar 

  47. H. O. Mártin and E. V. Albano,Z. Phys. B 70:213 (1988).

    Google Scholar 

  48. S. R. Anderson and F. Family,Phys. Rev. A 38:4198 (1988).

    Google Scholar 

  49. D. Stauffer,Introduction to the Percolation Theory (Taylor and Francis, London, 1985).

    Google Scholar 

  50. G. Grinstein, Z. W. Lai, and D. A. Browne,Phys. Rev. A 40:4820 (1989).

    Google Scholar 

  51. P. Grassberger and A. de la Torre,Ann. Phys. (N.Y.)122:373 (1979).

    Google Scholar 

  52. Wolfgang Kinzel, Directed percolation, inPercolation Structures and Processes, G. Deutscher, R. Zallen, and J. Adler, eds. (Israel Physical Society, Jerusalem, 1983), Chapter 18.

    Google Scholar 

  53. P. Grassberger,J. Phys. A Math. Gen. 22:3673 (1989).

    Google Scholar 

  54. I. Jensen, H. C. Fogedby, and R. Dickman,Phys. Rev. A 41:3411 (1990).

    Google Scholar 

  55. P. Grassberger,Z. Phys. B 47:365 (1982).

    Google Scholar 

  56. R. Dickman,Phys. Rev. A 40:7005 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albano, E.V. The critical behavior of dimer-dimer surface reaction models. Monte Carlo and finite-size scaling investigation. J Stat Phys 69, 643–666 (1992). https://doi.org/10.1007/BF01050429

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01050429

Key words

Navigation