Skip to main content
Log in

Crossover finite-size scaling at first-order transitions

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In a recent paper we developed a method which allows one to control rigorously the finite-size behavior in long cylinders near first-order phase transitions at low temperature. Here we apply this method to asymmetric transitions with two competing phases, and to theq-state Potts model as a typical model of a temperature-driven transition, whereq low-temperature phases compete with one high-temperature phase. We obtain the finite-size scaling of the firstN eigenvalues (whereN is the number of competing phases) of the transfer matrix in a periodic box of volumeL × ... ×L ×t, and, as a corollary, the finite-size scaling of the shape of the order parameter in a hypercubic box (t=L), the infinite cylinder (t=∞), and the crossover regime from hypercubic to cylindrical scaling. For the two-phase case (N=2 we find that the crossover lengthξ L is given by O(Lw)exp(ΒσLv), whereΒ is the inverse temperature, σ is the surface tension, and w=1/2 if v+1=2 whilew=0 if v+1 >2. For the standard Ising model we also consider free boundary conditions, showing that ξL=exp[ΒσLv+O(Lv− 1)] for any dimension v+1⩾2. For v+1=2 we finally discuss a class of boundary conditions which interpolate between free (corresponding to the interpolating parameter g=0) and periodic boundary conditions (corresponding to g=1), finding thatξ L=O(Lw)exp(ΒσL v) withw=0 forg=0 andw=1/2 for 0<g⩽1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Privman, ed.,Finite-Size Scaling and Numerical Simulation of Statistical Systems (World Scientific, Singapore, 1990).

    Google Scholar 

  2. C. Borgs and R. Kotecký, Finite-size effects at asymmetric first-order phase transitions,Phys. Rev. Lett. 68:1734–1737 (1992); A rigorous theory of finite-size scaling at first order phase transitions,J. Stat. Phys. 61:79 (1990).

    Google Scholar 

  3. C. Borgs, R. Kotecký, and S. Miracle-Sole, Finite-size scaling for Potts models,J. Stat. Phys. 62:529 (1991).

    Google Scholar 

  4. H. W. J. Blöte and M. P. Nightingale, Critical behavior of the two dimensional Potts model with a continuous number of states; a finite size scaling analysis,Physica 112A:405–465 (1981).

    Google Scholar 

  5. V. Privman and M. E. Fisher, Finite-size effects at first-order transitions,J. Stat. Phys. 33:385–417 (1983).

    Google Scholar 

  6. E. Brézin and J. Zinn-Justin, Finite size effects in phase transitions,Nucl. Phys. B 257:867–893 (1985).

    Google Scholar 

  7. G. Münster, Tunneling amplitude and surface tension inΦ 4-theory,Nucl. Phys. 324:630–642 (1989); Interface tension in three-dimensional systems from field theory,Nucl. Phys. 340:559–567 (1990).

    Google Scholar 

  8. V. Privman and N. M. Svrakic, Asymptotic degeneracy of the transfer matrix spectrum for systems with interfaces: Relation to surface stiffness and step free energy,J. Stat. Phys. 54:735–754 (1989).

    Google Scholar 

  9. C. Borgs and J. Z. Imbrie, Finite-size scaling and surface tension from effective one dimensional systems,Commun. Math. Phys. 145:235–280 (1992).

    Google Scholar 

  10. R. L. Dobrushin, Gibbs states describing the coexistence of phases for a three-dimensional Ising model,Theor. Prob. Appl. 17:582–600 (1972); Investigation of Gibbsian states for three-dimensional lattice systems,Theor. Prob. Appl. 18:253–271 (1973).

    Google Scholar 

  11. K. Jansen, J. Jersak, I. Montway, G. Münster, T. Trappenberg, and U. Wolf, Vacuum tunneling in the four-dimensional Ising model,Phys. Lett. 213:203 (1988).

    Google Scholar 

  12. K. Jansen and Y. Shen, Tunneling and energy splitting in Ising models, UCSD/PTH 92-02, preprint.

  13. F. Y. Wu,Rev. Mod. Phys. 54:235–268 (1982);55:315 (1983).

    Google Scholar 

  14. R. Kotecký and S. B. Shlosman, First order phase transitions in large entropy lattice models,Commun. Math. Phys. 83:493 (1982).

    Google Scholar 

  15. L. Lanait, A. Messager, S. Miracle-Solé, J. Ruiz, and S. Shlosman, Interfaces in the Potts model I: Pirogov-Sinai theory of the Fortuin-Kasteleyn representation,Commun. Math. Phys. 140:81–91 (1991).

    Google Scholar 

  16. G. G. Cabrera, R. Julien, E. Brézin, and J. Zinn-Justin, Test of finite-size scaling in first order phase transitions,J. Phys. (Paris)47:1305–1313 (1986).

    Google Scholar 

  17. C. Borgs, Finite-size scaling for Potts models in long cylinders,Nucl. Phys., to appear.

  18. G. G. Cabrera and R. Julien, Role of boundary conditions in finite-size Ising model,Phys. Rev. B 35:7062–7072 (1987).

    Google Scholar 

  19. M. N. Barber and M. E. Cates, Effect of boundary conditions on finite-size transverse Ising model,Phys. Rev. B 36:2024–2029 (1987).

    Google Scholar 

  20. D. B. Abraham, L. F. Ko, and N. M. Svrakic, Transfer matrix spectrum for the finite-width Ising model with adjustable boundary conditions: Exact solution,J. Stat. Phys. 56:563–587 (1989).

    Google Scholar 

  21. J. Bricmont and J. Fröhlich, Statistical mechanical methods in particle structure analysis of lattice field theories II: Scalar and surface models,Commun. Math. Phys. 98:553–578 (1985).

    Google Scholar 

  22. P. Holichy, R. Kotecký, and M. Zahradnik, Rigid interfaces for lattice models at low temperatures,J. Stat. Phys. 50:755–812 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgs, C., Imbrie, J.Z. Crossover finite-size scaling at first-order transitions. J Stat Phys 69, 487–537 (1992). https://doi.org/10.1007/BF01050424

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01050424

Key words

Navigation