Skip to main content
Log in

The spin-1/2XXZ Heisenberg chain, the quantum algebra Uq[sl(2)], and duality transformations for minimal models

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The finite-size scaling spectra of the spin-1/2XXZ Heisenberg chain with toroidal boundary conditions and an even number of sites provide a projection mechanism yielding the spectra of models with a central chargec < 1, including the unitary and nonunitary minimal series. Taking into account the half-integer angular momentum sectors—which correspond to chains with an odd number of sites—in many cases leads to new spinor operators appearing in the projected systems. These new sectors in theXXZ chain correspond to new types of frustration lines in the projected minimal models. The corresponding new boundary conditions in the Hamiltonian limit are investigated for the Ising model and the 3-state Potts model and are shown to be related to duality transformations which are an additional symmetry at their self-dual critical point. By different ways of projecting systems we find models with the same central charge sharing the same operator content and modular invariant partition function which, however, differ in the distribution of operators into sectors and hence in the physical meaning of the operators involved. Related to the projection mechanism in the continuum there are remarkable symmetry properties of the finiteXXZ chain. The observed degeneracies in the energy and momentum spectra are shown to be the consequence of intertwining relations involvingU q [sl(2)] quantum algebra transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. C. Alcaraz, U. Grimm, and V. Rittenberg,Nucl. Phys. B 316:735 (1989).

    Google Scholar 

  2. B. L. Feigin and K. B. Fuchs,Funct. Anal. Appl. 16:114 (1982).

    Google Scholar 

  3. V. Pasquier and H. Saleur,Nucl. Phys. B 330:523 (1990).

    Google Scholar 

  4. F. C. Alcaraz, M. Baake, U. Grimm, and V. Rittenberg,J. Phys. A 22:L5 (1989).

    Google Scholar 

  5. U. Grimm and V. Rittenberg,Int. J. Mod. Phys. B 4:969 (1990).

    Google Scholar 

  6. U. Grimm and V. Rittenberg,Nucl. Phys. B 354:418 (1991).

    Google Scholar 

  7. D. Baranowski, G. Schütz, and V. Rittenberg,Nucl. Phys. B 370:551 (1992).

    Google Scholar 

  8. S. Dasmahapatra, R. Kedem, and B. M. McCoy, preprint ITP-SB 92-11 (1992).

  9. F. C. Alcaraz, M. N. Barber, and M. T. Batchelor,Ann. Phys. (N.Y.)182:280 (1988).

    Google Scholar 

  10. F. C. Alcaraz, M. Baake, U. Grimm, and V. Rittenberg,J. Phys. A 21:L117 (1988).

    Google Scholar 

  11. C. P. Yang,Phys. Rev. Lett. 19:586 (1967).

    Google Scholar 

  12. B. Sutherland, C. N. Yang, and C. P. Yang,Phys. Rev. Lett. 19:588 (1967).

    Google Scholar 

  13. B. M. McCoy and T. T. Wu,Nuovo Cimento Ser. X 56B:311 (1968).

    Google Scholar 

  14. M. Baake, P. Christe, and V. Rittenberg,Nucl. Phys. B 300:637 (1988).

    Google Scholar 

  15. C. J. Hamer and M. T. Batchelor,J. Phys. A 21:L173 (1988).

    Google Scholar 

  16. J. L. Cardy, InPhase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1987).

    Google Scholar 

  17. A. Rocha-Caridi, InVertex Operators in Mathematics and Physics, J. Lepowski, S. Mandelstam, and I. Singer, eds. (Springer, New York, 1985).

    Google Scholar 

  18. D. Friedan, Z. Qiu, and S. Shenker,Phys. Rev. Lett. 52:1575 (1984).

    Google Scholar 

  19. B. Nienhuis, E. K. Riedel, and M. Schick,Phys. Rev. B 27:5625 (1983).

    Google Scholar 

  20. H. Saleur,Phys. Rev. B 35:3657 (1987).

    Google Scholar 

  21. G. v. Gehlen and V. Rittenberg,J. Phys. A 19:L625 (1986).

    Google Scholar 

  22. J. B. Kogut,Rev. Mod. Phys. 51:659 (1979).

    Google Scholar 

  23. P. Chaselon,J. Phys. A 22:2495 (1989).

    Google Scholar 

  24. P. Martin,Potts Models and Related Problems in Statistical Mechanics (World Scientific, Singapore, 1991), and references therein.

    Google Scholar 

  25. D. Levy,Phys. Rev. Lett. 67:1971 (1991).

    Google Scholar 

  26. G. Schütz, Weizmann preprint WIS/92/86/Nov.-PH.

  27. U. Grimm,Nucl. Phys. B 340:633 (1990).

    Google Scholar 

  28. C. N. Yang and C. P. Yang,Phys. Rev. 147:303 (1966);150:321, 327 (1966).

    Google Scholar 

  29. H. W. J. Blöte, J. L. Cardy, and M. P. Nightingale,Phys. Rev. Lett. 56:742 (1986).

    Google Scholar 

  30. I. Affleck,Phys. Rev. Lett. 56:746 (1986).

    Google Scholar 

  31. R. Bulirsch and J. Stoer,Numer. Math. 6:413 (1964).

    Google Scholar 

  32. M. Henkel and G. Schütz,J. Phys. A 21:2617 (1988).

    Google Scholar 

  33. G. Lusztig,Adv. Math. 70:23 (1988).

    Google Scholar 

  34. M. Rosso,Commun. Math. Phys. 117:581 (1988).

    Google Scholar 

  35. G. Lusztig,Contemp. Math. 82:59 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimm, U., Schütz, G. The spin-1/2XXZ Heisenberg chain, the quantum algebra Uq[sl(2)], and duality transformations for minimal models. J Stat Phys 71, 923–966 (1993). https://doi.org/10.1007/BF01049955

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049955

Keywords

Navigation