Skip to main content
Log in

Nonlinear chemical dynamics in low dimensions: An exactly soluble model

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Restricting space to low dimensions can cause deviations from the mean-field behavior in certain statistical systems. We investigate, both numerically and analytically, the behavior of the chemical reaction A+2X⇌3X in one and two dimensions. In one dimension, we produce exact results showing that the trimolecular reaction system stabilizes in a nonequilibrium, locally frozen, asymptotic state in which the ratior of A to X particles is a constant number,r=0.38, quite different from the mean-field ratio,r MF=1. The same trimolecular model, however, reaches the mean-field limit in two dimensions. In contrast, the bimolecular chemical reaction A+X⇌2X is shown to agree with the mean-field predictions in all dimensions. For both models, we show that the adoption of certain types of transition rules in the laws of evolution can lead to oscillatory steady states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-M. Ma,Modem Theory of Critical Phenomena (Benjamin, New York, 1976); H. E. Stanley,Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, 1971).

    Google Scholar 

  2. W. Feller,An Introduction to Probability Theory and Its Applications (Wiley, New York, 1971); S. Havlin and D. ben-Avraham,Adv. Phys. 36:695 (1987); G. H. Weiss and R. J. Rubin,Adv. Chem. Phys. 52:363 (1983).

    Google Scholar 

  3. H. Takayasu,Fractals in the Physical Science (Manchester University Press, Manchester, 1990); T. Vicsek,Fractal Frowth Phenomena (World Scientific, Singapore, 1989); J. Feder,Fractals (Plenum, New York, 1988).

    Google Scholar 

  4. G. Nicolis and I. Prigogine,Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977); H. Malchow and L. Schimansky-Geier,Noise and Diffusion in Bistable Nonequilibrium Systems (B. G. Teubner Verlagsgesellschaft, 1985).

    Google Scholar 

  5. B. Chopard and M. Droz,Europhys. Lett. 15(4):459 (1991); B. Chopard and M. Droz,J. Stat. Phys. 64:859 (1991); K. Lindenberg, B. J. West, and R. Kopelman, inNoise and Chaos in Nonlinear Dynamical Systems, F. Moss, L. A. Lugiato, and W. Schleich, eds. (Cambridge University Press, Cambridge, 1990); K. Kang and S. Redner,Phys. Rev. Lett. 52:955 (1984); K. Kang and S. Redner,Phys. Rev. A 32:435 (1985); K. Lindenberg, W.-S. Sheu, and R. Kopelman,J. Stat. Phys. 65:1269 (1991); C. R. Doering, M. Burschka, and W. Horsthemke,J. Stat. Phys. 65:953 (1991); E. Clement, P. Leroux-Hugon, and L. M. Sander,J. Stat. Phys. 65:925 (1991).

    Google Scholar 

  6. G. Nicolis and M. Malek Mansour,Prog., Theor. Phys. 64:249 (1978); M. Malek Mansour, C. Van Den Broeck, G. Nicolis, and J. W. Turner,Ann. Phys. (N.Y.)131:283 (1981).

    Google Scholar 

  7. D. Stauffer,Introduction to Percolation Theory (Taylor & Francis, London, 1985).

    Google Scholar 

  8. D. Dab, A. Lawniczak, J.-P. Boon, and R. Kapral,Phys. Rev. Lett. 64:2462 (1990); J. Weimar, D. Dab, J.-P. Bon, and S. Succi,Europhys. Lett., submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Provata, A., Turner, J.W. & Nicolis, G. Nonlinear chemical dynamics in low dimensions: An exactly soluble model. J Stat Phys 70, 1195–1213 (1993). https://doi.org/10.1007/BF01049428

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049428

Key words

Navigation