Skip to main content
Log in

Surface-driven instability and enhanced relaxation in the dynamics of a nonequilibrium interface

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We determine the stability of a nonequilibrium interface between two coexisting solid phases in the presence of a weak external field. Starting at the coarsegrained (Cahn-Hilliard) level, we use the method of matched asymptotics to derive the macroscopic interfacial dynamics. We then show that the external field leads to an instability due to flux along the interface, in contrast with the more common Mullins-Sekerka type instability, which involves fluxes normal to the interface. We also find that the external field produces an important modification of the Gibbs-Thomson relation. With these results, we perform the linear stability analysis for an approximately flat interface. If the field is tangent to the interface, the modification of the Gibbs-Thomson relation is important and the interface is stabilized. If the field is normal to the interface, the surface flux is important, and the effect can be stabilizing or destabilizing, but the orientational dependence is opposite what would be obtained if the Mullins-Sekerka instability dominates. Numerical simulations are performed to study the effect of the surface current and are in agreement with our analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Langer, inProceedings of Les Houches Summer School: Chance and Matter, J. Souletteet al., eds. (Elsevier, New York, 1987).

    Google Scholar 

  2. D. A. Kessler, J. Koplik, and H. Levine,Adv. Phys. 35:255 (1988).

    Google Scholar 

  3. P. Pelcé, ed.,Dynamics of Curved Fronts (Academic Press, London, 1988).

    Google Scholar 

  4. D. Bensimon, L. P. Kadanoff, S. Liang, B. I. Schraiman, and Ch. Tang,Rev. Mod. Phys. 58:977 (1986).

    Google Scholar 

  5. J. V. Maher,Phys. Rev. Lett. 54:1498 (1985); M. W. DeFrancesco and J. V. Maher,Phys. Rev. A 39:4709 (1989).

    Google Scholar 

  6. G. Tryggvason and H. Aref,J. Fluid Mech. 136:1 (1983);154:287 (1985).

    Google Scholar 

  7. J. Casademunt and D. Jasnow,Phys. Rev. Lett. 67:3677 (1991); J. Casademunt, D. Jasnow, and A. Hernàndez-Machado,Int. J. Mod. Phys. B 6:1647 (1992).

    Google Scholar 

  8. D. Jasnow, inPhase Transitions and Critical Phenomena, Vol. 10, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1986), p. 269, and references cited therein.

    Google Scholar 

  9. W. W. Mullins and R. F. Sekerka,J. Appl. Phys. 35:444 (1964).

    Google Scholar 

  10. P. G. Saffman and G. I. Taylor,Proc. R. Soc. A 245:312 (1958).

    Google Scholar 

  11. D. Jasnow and R. K. P. Zia,Phys. Rev. A 36:2243 (1987); Y. Oono and A. Shinozaki, University of Illinois, preprint (1992).

    Google Scholar 

  12. B. Derrida, J. L. Lebowitz, E. R. Speer, and H. Spohn,Phys. Rev. Lett. 67:165 (1991).

    Google Scholar 

  13. J. S. Langer and L. A. Turski,Acta. Metall. 25:1113 (1977); D. Jasnow, D. A. Nicole, and T. Ohta,Phys. Rev. A 23:3192 (1981).

    Google Scholar 

  14. K. Kawasaki and T. Ohta,Prog. Theor. Phys. 68:129 (1982); K. Kawasaki and T. Ohta,Physica A 118:175 (1983); T.Ohta,Ann. Phys. 158:31 (1984).

    Google Scholar 

  15. G. Caginalp,Ann. Phys. (N.Y.)172:136 (1986); G. Caginalp and P. C. Fife,SIAM J. Appl. Math. 48:506 (1988); G. Caginalp,Phys. Rev. A 39:5887 (1989).

    Google Scholar 

  16. R. L. Pego,Proc. R. Soc. Lond. A 422:261 (1989).

    Google Scholar 

  17. L. Bronsard and R. V. Kohn,J. Differential Equations 90:211 (1991).

    Google Scholar 

  18. H. K. Janssen and B. Schmittmann,Z. Phys. B 63:517 (1986).

    Google Scholar 

  19. H. K. Janssen and B. Schmittmann,Z. Phys. B 64:503 (1986).

    Google Scholar 

  20. K.-t. Leung and J. L. Cardy,J. Stat. Phys. 44:567 (1986).

    Google Scholar 

  21. K.-t. Leung, B. Schmittmann, and R. K. P. Zia,Phys. Rev. Lett. 62:1772 (1989).

    Google Scholar 

  22. A. Hernàndez-Machado and D. Jasnow,Phys. Rev. A 37:656 (1988).

    Google Scholar 

  23. K.-t. Leung,J. Stat. Phys. 50:405 (1988).

    Google Scholar 

  24. K.-t. Leung,J. Stat. Phys. 61:345 (1990).

    Google Scholar 

  25. R. K. P. Zia and K.-t. Leung,J. Phys. A 24:1399 (1991).

    Google Scholar 

  26. A. Hernàndez-Machado, H. Guo, J. L. Mozos, and D. Jasnow,Phys. Rev. A 39:4783 (1989).

    Google Scholar 

  27. S. Katz, J. L. Lebowitz, and H. Spohn,Phys. Rev. B 28:1655 (1983);J. Stat. Phys. 34:497 (1984).

    Google Scholar 

  28. J. Krug, J. L. Lebowitz, H. Spohn, and M. Q. Zang,J. Stat. Phys. 44:535 (1986); R. Dickman,Phys. Rev. A 38:2588 (1988); J. Krug,Phys. Rev. Lett. 67:1882 (1991).

    Google Scholar 

  29. L. Vallés and J. Marro,J. Stat. Phys. 43:441 (1986);49:89, 121 (1987); J. Marro, J. L. Vallés, and J. M. Gonzalez-Miranda,Phys. Rev. B 35:3372 (1987).

    Google Scholar 

  30. K. Kitahara, Y. Oono, and D. Jasnow,Mod. Phys. Lett. B 2:765 (1988).

    Google Scholar 

  31. C. Yeung, T. Rogers, A. Hernàndez-Machado, and D. Jasnow,J. Stat. Phys. 66:1071 (1992).

    Google Scholar 

  32. S. Puri, K. Binder, and S. Dattagupta,Phys. Rev. B 46:98 (1992).

    Google Scholar 

  33. D. H. Boal, B. Schmittman, and R. P. K. Zia,Phys. Rev. A 43:5214 (1991).

    Google Scholar 

  34. K.-t. Leung, K. K. Mon, J. L. Vallés, and R. K. P. Zia,Phys. Rev. Lett. 61:1744 (1988);Phys. Rev. B 39:9312 (1989).

    Google Scholar 

  35. J. W. Cahn and H. E. Hilliard,J. Chem. Phys. 28:258 (1958); H. E. Cook,Acta Metall. 18:297 (1970).

    Google Scholar 

  36. J. D. Gunton, M. san Miguel, and P. S. Sahni, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1983), p. 267; H. Furukawa,Adv. Phys. 34:703 (1985); K. Binder, inPhase Transformations of Materials (Materials Science and Technology), Vol. 5, P. Haasen, ed., p. 405 (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  37. T. Ohta,J. Phys. C 21:L361 (1988).

    Google Scholar 

  38. J. L. Mozos and A. Hernàndez-Machado, in preparation (1992).

  39. T. Rogers, Ph.D. Thesis, University of Toronto (1989).

  40. P. Pelce and A. Pumir,J. Cryst. Growth 73:337 (1985); P. Pelce,Europhys. Lett. 7:453 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeung, C., Mozos, J.L., Hernánez-Machado, A. et al. Surface-driven instability and enhanced relaxation in the dynamics of a nonequilibrium interface. J Stat Phys 70, 1149–1174 (1993). https://doi.org/10.1007/BF01049426

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049426

Key words

Navigation