Skip to main content
Log in

Classical Coulomb fluids in a confined geometry

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

It has already been argued that a classical (three-dimensional) Coulomb fluid confined between two parallel walls exhibits ideal gas features when the distance between the walls becomes small; this is confirmed in the present paper. Two-dimensional models of Coulomb fluids (with a logarithmic interaction), confined in a strip, are also studied. These models do not become ideal gases in the narrow strip limit. The correlation functions are also studied. There is a special temperature at which exact results are obtained. At that temperature, the two-dimensional, two-component plasma (two-dimensional Coulomb gas), which is a conductor when unconfined, becomes a dielectric as soon as it is confined in a strip of noninfinite width. This can be understood as a displacement of the Kosterlitz-Thouless transition by the confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Wertheim, L. Blum, and D. Bratko, inProceedings of the 1985 Symposium on Chemical Physics of Colloidal Phenomena, S. H. Chen and R. Rajagopalan, eds. (Springer, New York, 1990).

    Google Scholar 

  2. A. Luzar, D. Bratko, and L. Blum,J. Chem. Phys. 86:2955 (1987).

    Google Scholar 

  3. J. R. Henderson,Mol. Phys. 59:89 (1986).

    Google Scholar 

  4. D. Bratko, D. J. Henderson, and L. Blum,Phys. Rev. A 44:8235 (1991).

    Google Scholar 

  5. J. Chalupa,Phys. Rev. B 12:4 (1975); erratum13:2243 (1976).

    Google Scholar 

  6. H. Totsuji,J. Phys. Soc. Japan 39:253 (1975).

    Google Scholar 

  7. E. H. Hauge and P. C. Hemmer,Phys. Norveg. 5:109 (1971).

    Google Scholar 

  8. A. Alastuey,Ann. Phys. Fr. 11:653 (1986).

    Google Scholar 

  9. A. Alastuey and B. Jancovici,J. Phys. (Paris)42:1 (1981).

    Google Scholar 

  10. B. Jancovici,Phys. Rev. Lett. 46:386 (1981).

    Google Scholar 

  11. R. L. Guernsey,Phys. Fluids 13:2089 (1970).

    Google Scholar 

  12. A. S. Usenko and I. P. Yakimenko,Sov. Tech. Phys. Lett. 5:549 (1979).

    Google Scholar 

  13. M. L. Mehta,Random Matrices (Academic Press, New York, 1967).

    Google Scholar 

  14. P. J. Forrester and E. R. Smith,J. Phys. A: Math. Gen. 15:3861 (1982).

    Google Scholar 

  15. P. J. Forrester, B. Jancovici, and E. R. Smith,J. Stat. Phys. 31:129 (1983).

    Google Scholar 

  16. Ph. A. Martin,Rev. Mod. Phys. 60:1075 (1988).

    Google Scholar 

  17. M. Gaudin,J. Phys. (France)46:1027 (1985).

    Google Scholar 

  18. F. Cornu and B. Jancovici,J. Stat. Phys. 49:33 (1987).

    Google Scholar 

  19. J. M. Kosterlitz and D. J. Thouless,J. Phys. C 6:1181 (1973).

    Google Scholar 

  20. P. Minnhagen,Rev. Mod. Phys. 59:1001 (1987).

    Google Scholar 

  21. F. Cornu and B. Jancovici,J. Chem. Phys. 90:2444 (1989).

    Google Scholar 

  22. P. J. Forrester,J. Stat. Phys. 51:457 (1988).

    Google Scholar 

  23. P. J. Forrester,J. Stat. Phys. 54:57 (1989).

    Google Scholar 

  24. P. J. Forrester,J. Stat. Phys. 60:203 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jancovici, B., Manificat, G. Classical Coulomb fluids in a confined geometry. J Stat Phys 68, 1089–1103 (1992). https://doi.org/10.1007/BF01048886

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048886

Key words

Navigation