Skip to main content
Log in

Phenomenology of nonlocal cellular automata

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Dynamical systems with nonlocal connections have potential applications to economic and biological systems. This paper studies the dynamics of nonlocal cellular automata. In particular, all two-state, three-input nonlocal cellular automata are classified according to the dynamical behavior starting from random initial configurations and random wirings, although it is observed that sometimes a rule can have different dynamical behaviors with different wirings. The nonlocal cellular automata rule space is studied using a mean-field parametrization which is ideal for the situation of random wiring. Nonlocal cellular automata can be considered as computers carrying out computation at the level of each component. Their computational abilities are studied from the point of view of whether they contain many basic logical gates. In particular, I ask the question of whether a three-input cellular automaton rule contains the three fundamental logical gates: two-input rules AND and OR, and one-input rule NOT. A particularly interesting “edge-of-chaos” nonlocal cellular automaton, the rule 184, is studied in detail. It is a system of coupled “selectors” or “multiplexers.” It is also part of the Fredkin's gate—a proposed fundamental gate for conservative computations. This rule exhibits irregular fluctuations of density, large coherent structures, and long transient times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: An explanation of 1/f noise,Phys. Rev. Lett. 59:381–384 (1987).

    Google Scholar 

  2. E. Berlekamp, J. Conway, and R. Guy,Winning Ways for Your Mathematical Plays, Vol. 2 (Academic Press, 1984).

  3. T. Bohr, G. Grinstein, Y. He, and C. Jayaprakash, Coherence, chaos, and broken symmetry in classical, many-body dynamical systems,Phys. Rev. Lett. 58(21):2155–2158 (1987).

    Google Scholar 

  4. T. Bohr and O. B. Christensen, Size dependence, coherence, and scaling in turbulent coupled-map lattices,Phys. Rev. Lett. 63(20):2161–2164 (1989).

    Google Scholar 

  5. J. Carlson, J. Chayes, E. Grannan, and G. Swindle, Self-organized criticality in sandpiles: Nature of the critical phenomenon,Phys. Rev. A 42(4):2467–2470 (1990).

    Google Scholar 

  6. H. Chaté and P. Manneville, Collective behaviors in spatially extended systems with local interactions and synchromous updating,Prog. in Theor. Phys. 87:1–60 (1992).

    Google Scholar 

  7. A. Chhabra, M. Feigenbaum, L. Kadanoff, A. Kolan, and I. Procaccia, Sandpiles, avalanches, and the statistical mechanics of non-equilibrium stationary states, preprint (1992).

  8. E. F. Codd,Cellular Automata (Academic Press, New York, 1968).

    Google Scholar 

  9. J. P. Crutchfield and K. Kaneko, Phenomenology of spatio-temporal chaos, inDirections in Chaos, Bailin Hao, ed. (World Scientific, Singapore, 1987).

    Google Scholar 

  10. J. P. Crutchfield and K. Kaneko, Are attractors relevant to turbulence?Phys. Rev. Lett. 60(26):2715–2718 (1988).

    Google Scholar 

  11. J. P. Crutchfield, Hunting for transients and cycles, unpublished notes (March 1988).

  12. J. P. Crutchfield, Subbasins, portals, and mazes: Transients in high dimensions,Nucl. Phys. B (Proc. Suppl.) 5A:287–292 (1988).

    Google Scholar 

  13. F. Fogelman-Soulié, Parallel and sequential computation on Boolean networks,Theor. Computer Sci. 40:275–300 (1985).

    Google Scholar 

  14. E. Fredkin and T. Toffoli, Conservative logic,Int. J. Theor. Phys. 21(3/4):219–253 (1982).

    Google Scholar 

  15. P. Gacs, G. L. Kurdyumov, and L. A. Levin, One-dimensional uniform arrays that wash out finite islands,Prob. Peredachi. Inf. 14:92–98 (1978).

    Google Scholar 

  16. J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, 1983).

  17. H. Gutowitz, J. Victor, and B. Knight, Local structure theory for cellular automata,Physica D 28:18–48 (1987).

    Google Scholar 

  18. H. Gutowitz, Hierarchical classification of cellular automata,Physica D 45(1–3):136–156 (1990).

    Google Scholar 

  19. G. Grinstein, Stability of nonstationary states of classical, many-body dynamical systems,J. Stat. Phys. 5(5/6):803–815 (1988).

    Google Scholar 

  20. E. Jen, Global properties of cellular automata,J. Stat. Phys. 43(1/2):219–242 (1986); Invariant strings and pattern-recognizing properties of one-dimensional cellular automata,J. Stat. Phys. 43(1/2):243–265 (1986).

    Google Scholar 

  21. K. Kaneko, Lyapunov analysis and information flow in coupled map lattices,Physica D 23:436–447 (1986).

    Google Scholar 

  22. K. Kaneko, Chaotic but regular posi-nega switch among coded attractors by cluster-size variation,Phys. Rev. Lett. 63(3):219–223 (1989).

    Google Scholar 

  23. K. Kaneko, Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements,Physica D 41:137–172 (1990).

    Google Scholar 

  24. K. Kaneko, Super-transients, spatio-temporal intermittency and stability of fully developed spatio-temporal chaos,Phys. Lett. A 149(2, 3):105–112 (1990).

    Google Scholar 

  25. F. Kaspar and H. G. Schuster, Scaling at the onset of spatial disorder in coupled piecewise linear map,Phys. Lett. A 113:451–453 (1986).

    Google Scholar 

  26. S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets,J. Theor. Biol. 22:437–167 (1969).

    Google Scholar 

  27. S. A. Kauffman, Emergent properties in randomly complex automata,Physica D 10:145–156 (1984).

    Google Scholar 

  28. D. E. Knuth,The Art of Computer Programming, Vol. 2:Seminumerical Algorithms (Addison-Wesley, 1981).

  29. J. Krug, J. Socolar, and G. Grinstein, Surface fluctuations and criticality in a class of 1d sandpile models, preprint (1992).

  30. C. Langton, Studying artificial life with cellular automata,Physica D 22(1–3):120–149 (1986).

    Google Scholar 

  31. C. Langton, Computation at the edge of chaos: Phase transitions and emergent computation,Physica D 42:12–37 (1990).

    Google Scholar 

  32. C. Langton, Computation at the Edge of Chaos, Ph.D. Thesis, University of Michigan (1990).

  33. W. Li, Power spectra of regular languages and cellular automata,Complex Systems 1(1):107–130 (1987).

    Google Scholar 

  34. W. Li, Complex patterns generated by next nearest neighbors cellular automata,Computer Graphics 13(4):531–537 (1989).

    Google Scholar 

  35. W. Li, Problems in Complex Systems, Ph.D. Thesis, Columbia University, New York (1989) (Available from University Microfilm International, Ann Arbor, Michigan).

    Google Scholar 

  36. W. Li and N. Packard, Structure of the elementary cellular automata rule space,Complex Systems 4(3):281–297 (1990).

    Google Scholar 

  37. W. Li, N. Packard, and C. Langton, Transition phenomena in cellular automata rule space,Physica D 45(1–3):77–94 (1990).

    Google Scholar 

  38. W. Li and M. Nordahl, Transient behavior of cellular automaton rule 110,Phys. Lett. A, to appear (1992).

  39. W. Li, Parametrizations of cellular automata rule space, in preparation.

  40. W. Li, Group meeting problems, in preparation.

  41. W. Li, Dynamical behavior of coupled selectors, in preparation.

  42. K. Lindgren and M. Nordahl, Universal computation in simple one-dimensional cellular automata,Complex Systems 4(3):299–318 (1990).

    Google Scholar 

  43. B. D. Lubachesky, Efficient parallel simulations of asynchronous cellular arrays,Complex Systems 1(6):1099–1123 (1987).

    Google Scholar 

  44. J. L. Marroquín and A. Ramírez, Stochastic cellular automata with Gibbsian invariant measures,IEEE Trans. Information Theory 37(3):541–551 (1991).

    Google Scholar 

  45. P. C. Matthews and S. H. Strogatz, Phase diagram for the collective behavior of limitingcycle oscillators,Phys. Rev. Lett. 65:1701–1704 (1990).

    Google Scholar 

  46. R. May, Simple mathematical models with very complicated dynamics,Nature 261:459–467 (1976).

    Google Scholar 

  47. N. Packard, Complexity of growing patterns in cellular automata, inDynamical Systems and Cellular Automata, J. Demongeot, E. Goles, and M. Techuente, eds. (Academic Press, 1985).

  48. N. Packard, Adaptation toward the edge of chaos, inComplexity in Biological Modeling, S. Kelso and M. Shlesinger, eds. (World Scientific, Singapore, 1988).

    Google Scholar 

  49. P. Peretto and J.-J. Niez, Stochastic dynamics of neural networks,IEEE Trans. Systems, Man, Cybernet. 16(1):73–83 (1986).

    Google Scholar 

  50. C. Prado and Z. Olam, Inertia and break of self-organized criticality in sandpile cellularautomata model,Phys. Rev. A 45(2):665–669 (1992).

    Google Scholar 

  51. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical Recipes in C (Cambridge University Press, Cambridge, 1988).

    Google Scholar 

  52. D. R. Rasmussen and T. Bohr, Temporal chaos and spatial disorder,Phys. Lett. A 125(2, 3):107–110 (1987).

    Google Scholar 

  53. L. S. Schulman and P. E. Seiden, Statistical mechanics of a dynamical system based on Conway's Game of Life,J. Stat. Phys. 19:293–314 (1978).

    Google Scholar 

  54. R. Shaw,The Dripping Faucet as a Model Chaotic System (Aerial Press, 1984).

  55. R. J. Smith,Circuits, Devices, and Systems — A First Course in Electrical Engineering (Wiley, 1966, 1984).

  56. J. Theiler, Mean field analysis of systems that exhibit self-organized criticality, Center for Nonlinear Studies preprint, Los Alamos National Lab (1991).

  57. J. Theiler, private communication.

  58. T. Toffoli and N. Margolus,Cellular Automata Machine—A New Environment for Modeling (MIT Press, 1987).

  59. K. Tsang, R. Mirollo, S. Strogatz, and K. Wiesenfeld, Dynamics of a globally coupled oscillator array,Physica D 48:102–112 (1991).

    Google Scholar 

  60. D. K. Umberger, C. Grebogi, E. Ott, and B. Afeyan, Spatiotemporal dynamics in a dispersively coupled chain of nonlinear oscillators,Phys. Rev. A 39:4835–4842 (1989).

    Google Scholar 

  61. J. von Neumann,Theory of Self-Reproducing Automata, A. W. Burks, ed. (University of Illinois Press, 1966).

  62. G. Y. Vichniac, P. Tamayo, and H. Hartman, Annealed and quenched inhomogeneous cellular automata (ICA),J. Stat. Phys. 45(5/6):875–883 (1986).

    Google Scholar 

  63. C. C. Walker and W. R. Ashby, On temporal characteristics of behavior in a class of complex systems,Kybernetik 3:100–108 (1966).

    Google Scholar 

  64. C. C. Walker, Behavior of a class of complex systems: The effect of system size on properties of terminal cycles,J. Cybernet. 1(4):57–67 (1971).

    Google Scholar 

  65. C. C. Walker, Predictability of transient and steady-state behavior in a class of complex binary sets,IEEE Trans. Systems, Man, Cybernet. 3(4):433–436 (1973).

    Google Scholar 

  66. C. C. Walker, Stability of equilibrial states and limit cycles in sparsely connected, structurally complex Boolean nets,Complex Systems 1(6):1063–1086 (1987).

    Google Scholar 

  67. C. C. Walker, Attractor dominance patterns is sparsely connected Boolean nets,Physica D 45(1–3):441–451 (1990).

    Google Scholar 

  68. G. Weisbuch,Complex Systems Dynamics (Addison-Wesley, 1991).

  69. K. Wiesenfeld and P. Hadley, Attractor crowding in oscillator arrays,Phys. Rev. Lett. 62:1335–1338 (1989).

    Google Scholar 

  70. W. Wilbur, D. Lipman, and S. Shamma, On the prediction of local patterns in cellular automata,Physica D 19:397–410 (1986).

    Google Scholar 

  71. S. Wolfram, Statistical mechanics of cellular automata,Rev. Mod. Phys. 55:601–644 (1983).

    Google Scholar 

  72. S. Wolfram, Universality and complexity in cellular automata,Physica D 10:1–35 (1984).

    Google Scholar 

  73. S. Wolfram, Computation theory of cellular automata,Commun. Math. Phys. 96:15–57 (1984).

    Google Scholar 

  74. S. Wolfram, Twenty problems in the theory of cellular automata,Physica Scripta T9:170–183 (1985).

    Google Scholar 

  75. Appendix: Properties of thek=2r=1 cellular automata, inTheory and Applications of Cellular Automata, S. Wolfram, ed. (World Scientific, Singapore, 1986).

  76. W. Wootters and C. G. Langton, Is there a sharp phase transition for deterministic cellular automata?Physica D 45(1–3):95–104 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W. Phenomenology of nonlocal cellular automata. J Stat Phys 68, 829–882 (1992). https://doi.org/10.1007/BF01048877

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048877

Key words

Navigation