Skip to main content
Log in

Monte Carlo simulation of many-arm star polymers in two-dimensional good solvents in the bulk and at a surface

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A Monte Carlo technique is proposed for the simulation of statistical properties of many-arm star polymers on lattices. In this vectorizing algorithm, the length of each arml is increased by one, step by step, from a starting configuration withl=1 orl=2 which is generated directly. This procedure is carried out for a large sample (e.g., 100,000 configurations). As an application, we have studied self-avoiding stars on the square lattice with arm lengths up tol max=125 and up tof=20 arms, both in the bulk and in the geometry where the center of the star is adsorbed on a repulsive surface. The total number of configurations, which behaves asN∼l γG–1μfl, whereμ=2.6386 is the usual effective coordination number for self-avoiding walks on the square lattice, is analyzed, and the resulting exponentsγ G=γ(f) andγ s (f) for the bulk and surface geometries are found to be compatible with predictions of Duplantier and Saleur based on conformai invariance methods. We also obtain distribution functions for the monomer density and the distance of the end of an arm from its center. The results are consistent with a scaling theory developed by us.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Grest, K. Kremer, and T. A. Witten,Macromolecules 20:1376 (1987).

    Google Scholar 

  2. G. S. Grest, K. Kremer, S. T. Milner, and T. A. Witten,Macromolecules 22:1904 (1989).

    Google Scholar 

  3. J. Batoulis and K. Kremer,Macromolecules 22:427 (1989).

    Google Scholar 

  4. J. E. Lipson, S. G. Whittington, M. K. Wilkinson, J. L. Martin, and D. S. Gaunt,J. Phys. A 18:469 (1985).

    Google Scholar 

  5. M. K. Wilkinson, D. S. Gaunt, J. E. Lipson, and S. G. Whittington,J. Phys. A 19:789 (1986).

    Google Scholar 

  6. A. J. Barrett and D. L. Tremain,Macromolecules 20:1687 (1987).

    Google Scholar 

  7. S. A. Colby, D. S. Gaunt, G. M. Torrie, and S. G. Whittington,J. Phys. A 20:515 (1987).

    Google Scholar 

  8. M. Daoud and J. P. Cotton,J. Phys. (Paris) 43:531 (1982).

    Google Scholar 

  9. T. M. Birshtein and E. B. Zhulina,Polymer 25:1453 (1984).

    Google Scholar 

  10. B. Duplantier,Phys. Rev. Lett. 57:941 (1986).

    Google Scholar 

  11. B. Duplantier and H. Saleur,Phys. Rev. Lett. 57:3179 (1986); H. Saleur,J. Phys. A 19:L807 (1986).

    Google Scholar 

  12. B. Duplantier and H. Saleur,Phys. Rev. Lett. 59:539 (1987).

    Google Scholar 

  13. B. Duplantier and H. Saleur,Nucl. Phys. 290[FS20]:291 (1987); B. Duplantier,Phys. Rev. B 35:5290 (1987).

    Google Scholar 

  14. B. Duplantier,Europhys. Lett. 8:677 (1988).

    Google Scholar 

  15. B. Duplantier, inFundamental Problems in Statistical Mechanics, VII, H. van Beijeren, ed. (Academic Press, New York, 1990).

    Google Scholar 

  16. K. Ohno and K. Binder,J. Phys. (Paris) 49:1329 (1988).

    Google Scholar 

  17. K. Ohno and K. Binder,J. Chem. Phys., to appear.

  18. A. Miyake and K. F. Freed,Macromolecules 16:1228 (1983).

    Google Scholar 

  19. A. Miyake and K. F. Freed,Macromolecules 17:678 (1984).

    Google Scholar 

  20. C. H. Vlahos and M. K. Kosmas,J. Phys. A 20:1471 (1987).

    Google Scholar 

  21. K. Ohno,Phys. Rev. A 40:1524 (1989).

    Google Scholar 

  22. K. Huber, W. Burchard, and F. J. Fetters,Macromolecules 17:541 (1984); N. Khasat, R. W. Pennisi, N. Hadjichristidis, and L. J. Fetters,Macromolecules 21:1100 (1988); J. Roovers, P. Tonorowski, and J. Martine,Macromolecules 22:1897 (1989).

    Google Scholar 

  23. H. Watanabe and T. Kotaka,Macromolecules 17:342 (1984); L. Leibler and P. A. Pincus,Macromolecules 17:2922 (1984).

    Google Scholar 

  24. J. Batoulis and K. Kremer,J. Phys. A 21:127 (1988).

    Google Scholar 

  25. B. Nienhuis,Phys. Rev. Lett. 49:1062 (1982).

    Google Scholar 

  26. E. Eisenriegler, K. Kremer, and K. Binder,J. Chem. Phys. 77:6296 (1982); see also K. Binder and K. Kremer, inScaling Phenomena in Disordered Systems, R. Pynn and A. Skjeltorp, eds. (Plenum Press, New York, 1985).

    Google Scholar 

  27. J. L. Cardy,Nucl. Phys. B 240[FS12]:514 (1984).

    Google Scholar 

  28. I. Carmesin and K. Kremer,Macromolecules 27:711 (1988).

    Google Scholar 

  29. K. Kremer and K. Binder,Computer Phys. Rep. 7:259 (1988).

    Google Scholar 

  30. K. Ohno and K. Binder,J. Chem. Phys., to appear.

  31. B. Li and A. D. Sokal, preprint (1990).

  32. F. T. Wall and J. J. Erpenbeck,J. Chem. Phys. 30:634, 637 (1959); M. Lax and J. Gillis,Macromolecules 10:334 (1977); C. Brender, D. Ben-Avraham, and S. Havlin,J. Stat. Phys. 31:661 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohno, K., Binder, K. Monte Carlo simulation of many-arm star polymers in two-dimensional good solvents in the bulk and at a surface. J Stat Phys 64, 781–806 (1991). https://doi.org/10.1007/BF01048315

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048315

Key words

Navigation