Skip to main content
Log in

Kinetics of monolayer growth

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The kinetics of a monolayer growth is studied using the two-dimensional lattice gas model by means of the path-probability method (PPM) for nonequilibrium phenomena. Kinetic equations for the combined processes of relaxation (adsorption and desorption) and diffusion are derived analytically and solved for the first time in the square approximation of the PPM. Comparison of the square approximation with the point and pair approximations along with Monte Carlo simulation shows the effect of using a larger basic cluster than in the previous studies. When the square approximation is used, the growth rate results are much improved in both cases with and without diffusion and agree well with the Monte Carlo simulations results, except for very small values of the driving forceL=δμ/k b T whereδμ is the chemical potential difference between the vapor and the solid phase. In the range where the agreement is good, there exists a region where the growth rateR is proportional to exp(−c/L with a constantc. This is the feature which is characteristic of two-dimensional nucleation-limited growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kikuchi,Phys. Rev. 81:988 (1951).

    Google Scholar 

  2. R. Kikuchi,Prog. Theor. Phys. (Kyoto)Suppl. 35:1 (1966).

    Google Scholar 

  3. K. Wada, M. Kaburagi, T. Uchida, and R. Kikuchi,J. Stat. Phys. 53:1081 (1988).

    Google Scholar 

  4. D. E. Temkin,Sov. Phys. Crystallogr. 14 (1969).

  5. R. Kikuchi,J. Chem. Phys. 47:1646 (1967).

    Google Scholar 

  6. R. Kikuchi,J. Chem. Phys. 47:1653 (1967).

    Google Scholar 

  7. K. Wada, H. Tsuchinaga, and T. Uchida, inDynamics in Ordering Processes, S. Komura and H. Furukawa, [eds. (Plenum Press, New York, 1988), p. 29.

    Google Scholar 

  8. T. Uchida, F. Sato, and K. Wada,J. Crystal Growth 99:116 (1990).

    Google Scholar 

  9. J. M. Sanchez and D. de Fontaine,Phys. Rev. B 17:2926 (1987).

    Google Scholar 

  10. R. Kikuchi, Hughes Research Laboratories Research Report no. 391 (1968).

  11. R. Kikuchi, Hughes Research Laboratories Research Report no. 393 (1968).

  12. W. K. Burton, N. Cabrera, and F. C. Frank,Phil. Trans. R. Soc. Lond. A 243:299 (1951).

    Google Scholar 

  13. J. D. Weeks, G. H. Gilmer, and K. A. Jackson,J. Chem. Phys. 65 (1976).

  14. H. Müller-Krumbhaar,Phys. Rev. B 14:1308 (1974).

    Google Scholar 

  15. Y. Saito and H. Müller-Krumbhaar,J. Chem. Phys. 70:1079 (1979).

    Google Scholar 

  16. G. H. Gilmer, H. J. Leamy, K. A. Jackson, and H. Reiss,J. Crystal Growth 24/25:495 (1974).

    Google Scholar 

  17. G. H. Gilmer and P. Bennema,J. Crystal Growth 13/14:148 (1972).

    Google Scholar 

  18. G. H. Gilmer and P. Bennema,J. Appl. Phys. 43:1349 (1972).

    Google Scholar 

  19. H. Sato, T. Ishikawa, and R. Kikuchi,J. Phys. Chem. Solids 46 (1985).

  20. K. Wada, T. Ishikawa, and H. Tsuchinaga,Physica 142A:38 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchida, T., Wada, K. Kinetics of monolayer growth. J Stat Phys 64, 605–630 (1991). https://doi.org/10.1007/BF01048308

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048308

Key words

Navigation