Skip to main content
Log in

The central limit theorem for Chébli-Trimèche hypergroups

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let (S nn>-1) be a random walk on a hypergroup (ℝ + , *), i.e., a Markov chain with transition kernelN(x, A) = εx * μ(A), where μ is a fixed probability measure on ℝ + such that the second moment exists. Then depending on the growth of the hypergroup two situations can occur: when (ℝ + , *) is of exponential growth then it is shown thatS n is asymptotically normal. In the case of polynomial growth {more precisely, if the densityA of the Haar measure of (ℝ + , *) satisfies limχ→∞A′(χ)/A(χ)]=β}, the normalized variablesS n/[n Var(μ)/(β+1)]1/2 converge to a Rayleigh distributionρ β with parameter β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heyer, H. (1984). Probability theory on hypergroups: A survey. In:Probability Measures on Groups VII, Heyer, H. (ed.), Lecture Notes in Mathematics, Vol. 1064, Springer-Verlag, Berlin.

    Google Scholar 

  2. Bloom, W. R., and Heyer, H. (1985). Convolution semigroups and resolvent families of measures on hypergroups.Math. Z. 188, 449–474.

    Google Scholar 

  3. Eymard, P., and Roynette, B. (1975). Marches aléatoires sur le dual deSU(2). In:Analyse harmonique sur les groupes de Lie, Lecture Notes in Mathematics, Vol. 497, Springer-Verlag, Berlin, pp. 108–152.

    Google Scholar 

  4. Gallardo, L., and Ries, V. (1979). La loi des grands nombres pour les marches aléatoires sur le dual deSU(2).Studia Math. LXVI, 93–105.

    Google Scholar 

  5. Gallardo, L. (1984). Comportement asymptotique des marches aléatoires associées aux polynômes de Gegenbauer.Adv. Appl. Prob. 16(2), 293–323.

    Google Scholar 

  6. Gallardo, L., and Gebuhrer, O. (1987). Marches aléatoires et hypergroupes.Expo. Math. 5, 41–73.

    Google Scholar 

  7. Bingham, N. H. (1972). Random walks on spheres.Z. Wahrsch. verw. Gebiete 22, 169–192.

    Google Scholar 

  8. Kingman, J. F. C. (1963). Random walks with spherical symmetry.Acta Math. 109, 11–53.

    Google Scholar 

  9. Finckh, U. (1986). Beiträge zur Wahrscheinlichkeitstheorie auf einer Kingman-Struktur. Dissertation, Tübingen.

  10. Soardi, P. M. (1987). Limit theorems for random walks on discrete semigroups related to nonhomogeneous trees and Chebyshev polynomials. Preprint.

  11. Zeuner, Hm. Laws of large numbers for hypergroups on ℝ + . To appear.

  12. Trimèche, K. (1978). Probabilités indéfiniment divisibles et théorème de la limite centrale pour une convolution généralisée sur la demi-droite.C. R. Acad. Sci. Paris Sér. A 286, 63–66.

    Google Scholar 

  13. Chébli, H. (1974). Positivité des opérateurs de “translation généralisée” associées à un opérateur de Sturm-Liouville et quelques applications à l'analyse harmonique. Thèse, Université Louis Pasteur, Strasbourg I.

    Google Scholar 

  14. Trimèche, K. (1981). Transformation intégrale de Weyl et théorème de Paley-Wiener associé à un opérateur différentiel singulier sur (0, ∞).J. Math. Pures Appl. 60, 51–98.

    Google Scholar 

  15. Zeuner, Hm. (1989). One-dimensional hypergroups. To appear in:Adv. Math.

  16. Karpelevich, F. I., Tutubalin, V. N., and Shur, M. G. (1959). Limit theorems for the compositions of distributions in the Lobachevsky plane and space.Th. Prob. Appl. 4, 399–402.

    Google Scholar 

  17. Ostrovskii, I. V. (1981). Description of the classI 0 in a special semigroup of probability measures.Selected. Transl. Math. Stat. Prob. 15, 1–8.

    Google Scholar 

  18. Lukacs, E. (1970).Characteristic Functions, 2nd edition. Griffin, London.

    Google Scholar 

  19. Gallardo, L., and Gebuhrer, O. (1984). Lois de probabilité infiniment divisibles sur les hypergroupes commutatifs, discrètes, dénombrables. In:Probability Measures on Groups VII, Heyer, H. (ed.), Lecture Notes in Mathematics, Vol. 1064, Springer-Verlag, Berlin.

    Google Scholar 

  20. Watson, G. N. (1952).A Treatise on the Theory of Bessel Functions, 2nd edition. Cambridge at the University Press.

  21. Gallardo, L. (1986). Exemples d'hypergroupes transientes. In:Probability Measures on Groups VIII, Heyer, H. (ed.), Lecture Notes in Mathematics, Vol. 1210, Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeuner, H. The central limit theorem for Chébli-Trimèche hypergroups. J Theor Probab 2, 51–63 (1989). https://doi.org/10.1007/BF01048268

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048268

Key Words

Navigation